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Rivers, lakes, and wetlands are facing threats that continue to grow in intensity and frequency from climate change, habitat
fragmentation, invasive species, changes in food availability, natural disasters, various forms of pollution (e.g., trace metals,
light, noise), and emerging infectious diseases. These disruptions to freshwater environments are driving population declines
in freshwater fishes as well as threatening migratory species that need freshwater habitats to complete their life cycle. To
improve freshwater fish conservation efforts, it is essential to understand the magnitude and nature of the threats fish are
currently facing. Here, we present a series of case studies that illustrate the utility of employing physiological methods to assess
both the threats facing freshwater fishes, and the conservation efforts being used to help preserve freshwater biodiversity. We
present an array of physiological tools that can be used across multiple levels of biological organization, from molecular to
population-level, to address a variety of questions. Finally, we share what we view to be pressing questions in freshwater fish
conservation physiology and highlight strategies to help bridge gaps across different user groups.

Lay Summary

Here, we summarize pressing threats facing freshwater fishes and highlight specific physiological tools that can help
characterize the nature and magnitude of the threat, as well as the efficacy of mitigation efforts. Case studies illustrate the
diversity of ways physiological techniques can improve freshwater fish conservation.
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Introduction
Freshwater ecosystems are home to more than 18000 species
of fish (approximately 51% of known fish species; Strayer
and Dudgeon, 2010); but represent a mere 1% of global
aquatic ecosystems. Fresh waters are therefore biodiversity
hotspots, though they tend to be viewed as a resource to be
exploited, rather than a diverse habitat in need of protection
(Birnie-Gauvin et al., 2023). Freshwater fishes have declined
by an astounding 76% since 1970, with the abundance of
freshwater mega-fishes (>30 kg) having declined by 94%
(Deinet et al., 2020). Rivers, lakes, and wetlands are facing
threats that continue to grow in intensity and frequency,
including climate change, habitat fragmentation, infectious
diseases, invasive species, various forms of pollution (e.g.,
microplastics, sewage, light, noise), and many others (Dud-
geon et al., 2006, Reid et al., 2019). These disruptions to
freshwater environments are driving population declines in
freshwater species as well as threatening migratory species
that need both saltwater and freshwater habitats to complete
their life cycle. Whereas some threats to fishes are common
across the globe (e.g., climate change, overfishing), freshwa-
ter systems face unique issues that hinder conservation and
sustainable management efforts.

Conservation physiology offers an important approach
for understanding and mitigating the threats facing freshwa-
ter ecosystems. Although several reviews have covered how
conservation physiology can inform management and policy
(Madliger et al., 2016, Madliger et al., 2020, Madliger et al.,
2018) as well as threat assessment and recovery planning of
endangered species (Birnie-Gauvin et al., 2017), those related
to fishes have largely focused on marine ecosystems (e.g.,
Cooke et al., 2014, McKenzie et al., 2016) or a specific
species (e.g., Pacific salmon; Cooke et al., 2012). Our goal
is to demonstrate how conservation physiology can improve
the scientific knowledge base that underpins advice for the
sustainable management of freshwater fishes experiencing
a diversity of threats. We convened as a group of eleven
experts in the field of freshwater fish conservation physiol-
ogy (representing early to mid-career individuals employed

in academic or government settings) to compile a list of
important existing and emerging threats facing freshwater
fishes. We acknowledge that our group of experts is limited to
North America and Europe, which may have introduced bias
into our perception of relevant stressors. All threats included
here were mutually agreed upon. Here, we highlight these
threats (Figure 1) and identify how they are being addressed
using conservation physiology tools. We also discuss knowl-
edge gaps surrounding multi-stressor impacts and approaches
to addressing these and conclude with a discussion of the
barriers and challenges associated with moving research to
successful conservation management.

Threats Being Addressed with Conser-
vation Physiology
Increased temperature
Temperature is considered the ecological master factor,
governing the biochemistry, physiology, and behaviour of
ectothermic fish (Brett, 1971). Specifically, acute warming
temperatures are known to have a suite of physiological
changes including but not limited to, increased ectotherm
metabolism, mobilized glucose stores, induced changes in cell
membrane composition, and upregulated some heat shock
proteins (Eliason and Anttila, 2017, Fry, 1947). Chronic
exposures to high temperatures can limit growth rates,
increase susceptibility to disease, and even cause mortality
(Alfonso et al., 2020, Schulte et al., 2011, Stewart et al., 2015).
Climate change and other anthropogenic effects are causing
increased mean temperature, record-breaking heat waves, and
greater thermal variability (Perkins-Kirkpatrick and Lewis,
2020, Van Vliet et al., 2013). Freshwater fish are limited in
their ability to move across large geographic areas, which
reduces their capacity for behavioural thermoregulation and
imposes physiological challenges. Conservation physiologists
have successfully used several techniques to investigate
temperature effects on freshwater fishes. Respirometry is
the most common method used to determine metabolic
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Figure 1: Diverse threats facing freshwater fishes. Created in BioRender, (Schwieterman, G. (2025) https://BioRender.com/w27j369).

demands and constraints on fish and can therefore help
estimate thermal performances and tolerance under various
thermal regimes (Norin and Speers-Roesch, 2020, Sinclair
et al., 2016). One frequently used measure of the metabolic
constraints on fish is aerobic scope (AS), which is the
difference between maximal oxygen consumption (maximum
metabolic rate, MMR) and oxygen consumption at rest
(routine or standard metabolic rate, SMR). Respirometry is
commonly paired with other techniques including the critical
thermal maximum (CTmax) test (Desforges et al., 2023), the
Arrhenius breakpoint temperature (ABT) test (Casselman
et al., 2012, Gilbert and Farrell, 2021), transcriptomics
(Mackey et al., 2020, von Biela et al., 2023), blood physiology
(Handy et al., 1999, Hasler et al., 2017, Muusze et al., 1998,
Poluhowich and Parks, 1972, Winter et al., 2018), muscle
contractility (Woytanowski and Coughlin, 2013), behaviour
(Brownscombe et al., 2024, Zupa et al., 2021), or sensory
biology (Hasenei et al., 2020) to reveal the temperatures at
which fish are physiologically compromised. These metrics
can be used to model thermal performance curves which
help determine optimal temperatures for performance (Topt)
across populations or species (Chen et al., 2013, Claireaux

et al., 2013, Healy and Schulte, 2012). Additionally, these
thermal thresholds can inform species abundance models to
predict which species or populations may be most vulnerable
to climate change (Wagner et al., 2023).

One notable example of using respirometry to study the
effects of increased temperature on fish comes from the
Fraser River watershed in British Columbia, Canada, where
summer water temperatures have increased by over 2◦C
since the 1950s (Patterson et al., 2007) and are projected
to continue increasing (Grant et al., 2019). Alarmingly,
high river temperature is correlated with elevated en route
mortality for migrating adult Pacific salmon (Martins et al.,
2012). Researchers have demonstrated that Pacific salmon
populations are physiologically adapted to their specific
migration conditions (difficulty and thermal regime) (Crossin
et al., 2004, Eliason et al., 2011, Lee et al., 2003). For
example, a comparison of thermal performance curves for
aerobic scope (AS) across six populations of migrating
adult sockeye salmon (Oncorhynchus nerka) demonstrated
differences in the temperatures at which AS is optimal (Topt)
and zero (Tcrit), with unusually high and broad thermal
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tolerance of the Chilko population. Researchers sought a
mechanistic basis for these intraspecific differences, and
through temperature-holding experiments revealed greater
ventricular β-adrenoceptor density (Bmax) in the Chilko pop-
ulation compared to the other population with lower thermal
tolerance (Eliason et al., 2011). The Canadian Department of
Fisheries and Oceans now uses population-specific thermal
performance metrics and temperature-dependent mortality
estimates to regulate flow release and inform harvest
limits during heatwaves to best sustain fish populations
(Hague and Patterson, 2014, Macdonald et al., 2012,
Patterson et al., 2016).

Eutrophication
Anthropogenic eutrophication is caused by nutrient enrich-
ment (primarily nitrogen and phosphorus) from agriculture
and urbanisation. Nutrient sources include point sources,
such as wastewater treatment plants, and diffuse sources,
such as agriculture and runoff. Natural freshwater systems
are often phosphorous-limited but can be nitrogen- or co-
nutrient limited (Conley et al., 2009). Nitrates (NO3

-) and
nitrites (NO2

-), ambient nitrates hereafter, as well as total
ammonia (equilibrium between ionized ammonium NH4

+

and ionized “free” ammonia NH3), are the most prevalent
nitrogen pollutants that are both bioavailable to primary
producers, and potentially harmful to fish (Edwards et al.,
2024; Rodgers, 2021). Excess nutrients trigger algal growth
and subsequent decay, which causes increased turbidity,
hypoxia, and changing pH; effects that are accelerated
with increased temperature (Diaz and Breitburg, 2009;
Rodgers, 2021). Nutrient enrichment is also associated
with blooms of toxic cyanobacteria (O’Neil et al., 2012),
which can be harmful to fish. Therefore, freshwater fish
in hypereutrophic systems must cope with sequential and
possibly synergistic direct and indirect stressors from acute to
chronic timescales.

Nitrogen pollutants lead to diverse and complex sublethal
and lethal impairments in fish. Ambient nitrates enter the
blood through the gills by facilitated diffusion in place of
chloride (Cl-) ions (Williams and Eddy, 1986). High plasma
nitrate levels can disrupt ion balances and oxidise hemoglobin
into methemoglobin, a non-functional form that cannot bind
oxygen (Jensen, 1987, Lefevre et al., 2011). These lead to
cardiorespiratory impairment. Specifically, a fish’s AS can
decline with nitrate acclimation either due to decreasing
MMR (Gomez Isaza et al., 2020b, Gomez Isaza et al., 2020c,
Opinion et al., 2020) or increasing SMR (Gomez Isaza et al.,
2020a). Additionally, nitrogen pollution can lead to decreased
growth (NO3

-, Monsees et al., 2017; NO2
-, Kroupova et al.,

2008), decreased swimming performance (Gomez Isaza et al.,
2020b), hyperkalemia (NO2

-, Aggergaard and Jensen 2001),
increased antioxidant activity (Presa et al., 2022), gill swelling
and damage (NO2

-, Kroupova et al., 2008, NO3
-, Monsees

et al., 2017), enlarged liver (NO3
-, Monsees et al., 2017),

and enlarged spleen (NO3
-, Opinion et al., 2020). Ultimately,

nitrate exposure can be lethal to fish (e.g., Gomez Isaza
et al., 2021, Lefevre et al., 2011, Kroupova et al., 2008,
Ferreira da Costa et al., 2004, Presa et al., 2022). Similarly,
the effects of ammonia include, but not limited to, impaired
neurological function and reduced ATP production, increased
reactive oxygen species (ROS) and oxidative damage, reduced
swimming capacity, lethargy and death (reviewed by Ip and
Chew 2010, Randall and Tsui, 2002, Edwards et al., 2024).
Furthermore, the toxicity of total ammonia increases with
increasing pH and temperature; theses effects are particularly
concerning in changing climates.

Eutrophication is a widespread global issue with few
management and remittance guidelines. For example, the
Canadian Council of Ministers of the Environment (CCME)
generated controversy with its freshwater nitrate guideline
(for point and non-point sources) in 2003 (CCME, 2003),
because it was based on the sensitivity of the Pacific treefrog
(Pseudacris regilla), whereas many mines, which are point
sources for nitrates, are situated at sites too cold for
amphibians and do not discharge into amphibian habitat.
By using physiological approaches to assess a broader
range of species, the updated 2012 guidelines included
toxicological studies of 12 species, including fish, amphibians,
algae, and invertebrates (CCME, 2012). Recently, Health
Canada modelled a species sensitivity distribution and used
the 5th percentile to derive a guideline of 13 mg NO3

-/L.
The most sensitive species in the analysis was lake trout
(Salvelinus namaycush; early life stages [embryo, larva, swim-
up fry]), where swim-up fry had reduced growth in chronic
development test after exposure to 28 mg NO3

-/L (McGurk
et al., 2006). This updated guideline does not incorporate
any toxicity modifying factors, such low chloride (Crawford
and Allen, 1977, Jensen, 2003) and water hardness, or any
of the indirect effects of eutrophication (such as hypoxia
and decreases in pH). Of 13 Canadian provinces and
territories, only five have adopted this guideline and only
the province of Manitoba has regulations to enforce it.
Total ammonia (TAN) guidelines for freshwater are issued
more broadly, including by United States Environmental
Protection Agency (US EPA 2013), by Australian and
New Zealand Environment and Conservation Council
and Agriculture and Resource Management Council of
Australia and New Zealand (ANZECC and ARMCANZ
2000), and by Canadian Environmental Protection Act 1999;
however not all consider secondary factors like temperature.
Future work would benefit from approaching eutrophication
as part of a multi-stressor framework, exploring the
combined effects of nitrate exposure and other factors
such as temperature and life-stage on lethal and sub-lethal
outcomes.

Habitat loss & fragmentation
Freshwater systems are a continuum of heterogeneous
habitats that naturally rely on movement between systems.
With the increasing human population and an ever-growing
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demand for space and resources, freshwater systems face
fragmentation and isolation (Arthington et al., 2016, Mota
et al., 2014). Nevertheless, unobstructed connectivity is
essential to maintaining genetic flow (Coleman et al., 2018)
and access to various habitats for foraging or reproduction,
which is particularly essential for diadromous species such
as eels (Anguilla spp.), salmonids, shads (Alosa spp), and
sturgeons (Acipenser spp.) (Arthington et al., 2016). Addi-
tionally, human manipulation of waterways leads to more
simplified, homogenous habitats that can alter or impair fish
behaviour (e.g., the removal of spawning substrates and three-
dimensional structures that are important for behaviour,
algal growth, and low-velocity zones) and environmental
conditions (e.g., temperature, oxygen, pollution) (Friberg
et al., 2016, Strailey and Suski, 2022).

One example of how physiological approaches can be
used to assess the impacts of habitat fragmentation comes
from a pressing issue in Europe: the disruption of migration
passage of the endangered European eel (A. anguilla L.).
Eels often must pass through dams, weirs, and hydropower
plants. Researchers used acoustic and Passive Integrated
Transponder (PIT) telemetry to assess mortality and return
rates through different barriers and identified which barriers
reduced escapement and caused migration delay (Piper et al.,
2013). To further understand physiological stress on those
that do survive passage, Ammar et al. (2021) assessed damage,
stress, and immune biomarkers in eels that successfully
passed through turbines. They found that turbine passage
caused internal and external damage, and altered plasma
glucose levels, alternative complement (ACH50), lysozyme,
and peroxidase activities, and total immunoglobulin content
(Ammar et al., 2021). These findings indicate that passage
requires higher energy expenditure and disrupts immunity,
highlighting the indirect consequences of passages and the
importance of minimising such effects. These sub-lethal
impacts may have serious consequences at the population
level and are readily documented through the application of
physiological methodologies.

Invasive species
Aquatic invasive species pose a substantial threat to fresh-
water ecosystems as introduced or colonising species may
alter community structure and habitat quality, and lead to
significant economic consequences (Turbelin et al., 2023).
Freshwater communities particularly vulnerable to invasive
species compared to others, such as terrestrial communi-
ties, because of the high frequency, duration, and magnitude
of anthropogenic impacts on freshwater systems (Gherardi
et al., 2008; Moorhouse and Macdonald, 2015; Rahel, 2007).
Anthropogenic alterations of waterways that facilitate the
spread and establishment of invasive species include increas-
ing watershed connectedness, habitat homogenization, and
reducing native predators and competitors (see Moyle and
Light, 1996; Scott and Helfman, 2001; Scott, 2006; Johnson
et al., 2008). Invasive species are regularly introduced into

freshwater systems by intentional releases, ballast water, bait
buckets, and boat trailers, to name a few. Invasive species have
characteristics that give them a competitive advantage against
native species and promote their spread (García-Berthou,
2007; Ricciardi and Atkinson, 2004). For example, one of
the many competitive advantages successful invasive species
often have over other species is a broad tolerance to envi-
ronmental stressors (Komoroske et al., 2020, Wellband and
Heath, 2017). One strategy to evaluate invasion potential
may include expanding physiological data on thermal limits
with genomic studies of the invading population. Once estab-
lished, invasive species impact native freshwater ecosystems
via predation, competition, hybridization, disease transfer,
and habitat modification (Gallardo et al., 2016; Peeler et al.,
2011; Oliveira et al., 2006). These can lead to devastating
biological consequences, such as trophic cascades (Brett and
Goldman, 1996; Brooks and Dodson, 1965) and extinctions
of endemic species (Miller et al., 1989).

A well-documented example of the impact of invasive
species to freshwater systems is from the invasion of sea lam-
prey (Petromyzon marinus) to the Laurentian Great Lakes.
Sea lamprey were able to colonise the upper Great Lakes
after the construction of the Welland Canal and subsequently
devastated the fishing industry in the region. Chemical pesti-
cides have been used to dramatically reduce the sea lamprey
population since the 1960s (Siefkes, 2017). Rotenone and
antimycin are commonly used to remove invasive fish, how-
ever the compound 3-trifluoromethyl-4-nitrophenol (TFM)
was found to be more toxic to lampreys than other species of
fishes (Wilkie et al., 2019). The compound niclosamide was
then added to the TFM treatments to improve the efficiency of
the sea lamprey control measures; however, niclosamide is less
specific to lampreys. Through extensive physiological assess-
ments, researchers have been able to determine the mechanism
of toxicity in fishes of these compounds by interfering with
mitochondrial adenosine triphosphate (ATP) production (e.g.,
Birceanu et al., 2011, Borowiec et al., 2022, Lawrence et al.,
2021a). Using RNA-sequencing approaches, researchers have
been able to identify unique cellular responses to lampricide
exposure that contribute to differences in TFM tolerance
between sea lamprey and the most tolerant teleost species that
has been tested, the bluegill (Lepomis macrochirus; Lawrence
et al., 2021, 2023). Knowledge of physiological tolerances can
also make the control of invasive species, like sea lamprey,
more effective. For example, there is evidence that larval
lamprey sensitivity to TFM is seasonal, peaking during late
spring (Muhametsafina et al., 2019, Scholefield et al., 2008).
Hlina et al. (2021) found that this seasonality is related to
temperature, rather than energy stores or body condition.
Thus, managers can choose to use TFM to control larval lam-
prey when the temperature is optimal. These studies demon-
strate the importance of understanding how genomic and
transcriptomic methods can complement traditional physio-
logical assessments to determine the physiological responses
to stressors and identify species-specific cellular responses to
contaminant exposure.
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Changes in food availability & quality
Humans are altering the nutritional status of freshwater
and anadromous fish by changing their food web structure
and dynamics (e.g., diet availability, options, and quality).
These changes often co-occur or directly result from other
anthropogenic stressors. Pollution, rising temperatures, harm-
ful algal blooms, salinisation, and invasive species can all
reduce food availability or alter food quality for endemic
fish populations, while also impacting the animals’ ability
to find, ingest, digest, and assimilate a meal (Birnie-Gauvin
et al., 2017, Eliason and Hardison, 2024, Reid et al., 2019).
In turn, changes in the fish’s nutritional status can negatively
affect its immune function, environmental tolerances, growth,
reproduction, inter and intra-specific behaviours, develop-
ment, migratory timing, energy balance, and more (Archer
et al., 2019, Brett, 1971, Brett et al., 1969, Chase et al., 2016,
Hansen et al., 2020, Huey and Kingsolver, 2019, Mishra and
Samantaray, 2004, Rodgers et al., 2019, Turko et al., 2020,
Woiwode and Adelman, 1991). To manage food resources for
freshwater fishes, researchers must (1) identify the cause of
the nutritional stress, (2) determine the consequences and the
severity of the nutritional stress on the animal, (3) evaluate
remediation options, and (4) execute on an informed remedia-
tion plan. Conservation physiology can aid in determining the
cause, consequences, and best course of action for correcting
nutritional stress in freshwater fish.

For example, several salmonid species (e.g., brown trout,
Chinook salmon, coho salmon, steelhead trout, and more;
Harder et al., 2018) are vulnerable to a thiamine (vitamin
B1) deficiency, which causes high mortality rates, neuro-
logical disfunction, and abnormal behaviour (e.g., swim-
ming, activity; Mantua et al., 2021; Harder et al., 2018).
In California, this has recently been observed in hatchery-
reared Chinook salmon, where the deficiency has been linked
to heightened anchovy consumption during the adult fish’s
marine life stage, resulting from simultaneous reductions
in other salmon prey and increases in anchovy abundance.
Compared to other Chinook salmon prey, anchovy contain
disproportionally high amounts of thiaminase, an enzyme
that can degrade thiamine, which may explain why adult
females returned from the ocean to freshwater with thiamine-
deficient eggs (Harder et al., 2018, Mantua et al., 2021). The
link between prey and thiamine deficiency was discovered
through gut content analysis of adult Chinook salmon in
their marine life stage and nutritional analysis of tissue from
adults, eggs, and early life stages (Mantua et al., 2021).
Researchers have found that exposing fry to thiamine baths
or directly injecting pre-spawn females with thiamine rescues
the fish from the deficiency (Futia et al., 2017). Notably,
thiamine deficiency has been observed in several freshwater
and anadromous fishes, and determining the exact cause of
the deficiency and how to manage it in wild fish is an active
area of research for conservation physiologists (Baker et al.,
2023, Harder et al., 2018). For example, in the great lakes,
the deficiency is similarly linked to thiaminase concentra-

tions found in prey fish, like alewife (Harder et al., 2018).
While in a hatchery setting, thiamine deficiency can be miti-
gated through thiamine baths and other measures, managing
this deficiency in wild fish populations is complicated. In
lakes, successful mitigation of thiamine deficiency may be
possible by managing prey populations to ensure sufficient
availability of prey with low levels of thiaminase. However,
implementing measures to mitigate thiamine deficiency is
an ongoing challenge, especially in areas where conserva-
tion practices do not always align with community interests
(Harder et al., 2018). Despite these challenges, conservation
physiology can help address nutritional stress by identify-
ing deficiencies in wild fish stocks and informing potential
solutions.

Natural disasters
Natural disasters are extreme geophysical events that have
profound effects on their surrounding environments. In fresh-
water systems, natural disasters include drought, wildfire,
floods, landslides, and other extreme weather or geological
events such as hurricanes and earthquakes (Cooke et al.,
2023). These events have occurred naturally throughout his-
tory and have shaped ecological processes and freshwater fish
communities. Natural disasters impact freshwater fish popu-
lations through physical displacement, habitat loss, acute and
chronic alterations in water quality, and changes in food avail-
ability and food web dynamics. For example, drought can
lead to altered fish species assemblages due to the dominance
of species with high thermal tolerance, generalist diets, and
high dispersal abilities (Bond et al., 2008, Chessman, 2013,
Matthews and Marsh-Matthews, 2003). On the individual
level, the environmental changes brought on by natural dis-
asters can have physiological consequences that lead to fish
mortality or reduced fitness. Landslides, for example, create
energetic challenges for fish by mobilizing suspended sedi-
ments into waterways and by altering flow patterns (Cooke
et al., 2023). Excess suspended sediments can cause gill dam-
age which, if nonlethal, has cascading effects on general stress
levels and metabolic demands (Kemp et al., 2011). High
water velocities in narrowed stream or river channels where
landslides have occurred increase the energetic effort required
for migratory fish to pass through which can reduce the
likelihood of migration success (Hinch et al., 1996).

Natural disasters are becoming more frequent and often
have more extreme effects on freshwater systems as a
result of human-mediated impacts such as climate change,
urbanisation, and water extraction. These changes can create
challenges even for species that are adapted to withstand
disturbances (Banholzer et al., 2014, Bixby et al., 2015,
Bond et al., 2008, Cooke et al., 2023, Val and Wood, 2022).
Different types of natural disasters can also increase the risk
or exacerbate the effects of one another on freshwater fishes
and their habitats. For example, dry vegetation resulting
from drought leads to increased wildfire risk (Westerling
et al., 2006) and the destruction of vegetation by wildfire
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can increase the risk of landslides and flooding (Gomez
Isaza et al., 2022). Disasters that lead to habitat loss or
reorganisation (e.g., landslides, flooding, earthquakes) can
make fish more vulnerable to disasters like drought where the
availability of refuge habitats are crucial for fish persistence.

Physiological techniques can be used to assess the vulner-
ability of freshwater fishes to natural disasters. One example
comes from prairie stream fishes’ responses to drought.
Hopper et al. (2020) found that differences in thermal
tolerance between sympatric species of prairie stream fishes
predicted their relative responses to severe habitat drying.
A previously dominant species, southern redbelly dace
(Chrosomus erythrogaster), was found to have the lowest
thermal tolerance of the species tested, and field obser-
vations confirmed that this species experienced a 95%
decline in abundance during the drought. The native
central stoneroller (Campostoma anomalum) had a higher
thermal tolerance and persisted across more pools than the
southern redbelly dace. The invasive western mosquitofish
(Gambusia affinis) had the highest thermal tolerance of
these species and became the dominant species in the study-
reach during the drought. This study is an example of
how physiological tolerance data can be used to predict
shifts in freshwater fish community structure during a
natural disaster. Adaptive management practices that consider
the physiology of freshwater fishes and that promote
ecosystem resilience (e.g., maintenance of natural flow
regimes and native biodiversity; Lytle and Poff, 2004, Moberg
& Galaz,, 2005, Orchard et al., 2017) are critical for
mitigating the effects of natural disasters on freshwater
fishes.

Contaminants
The anthropogenic contamination of freshwater environ-
ments has exponentially increased in recent decades, making
pollution in aquatic ecosystems one of the most significant
contributors to biodiversity loss (Sigmund et al., 2023).
Contaminants can be detected in most aquatic environments
including isolated areas like the Arctic (Gauthier et al., 2021)
and have been shown to have a diverse range of impacts, with
more than 11, 500 out of 83, 699 species considered to be
impacted by pollution via the Red List led by the International
Union for Conservation of Nature (IUCN, 2022). There is a
diverse range of contaminants present in the environment;
however they fall into one of two categories, the first being
organic which are expansive and include chemicals like,
pesticides, pharmaceuticals, perfluoroalkyl and polyfluo-
roalkyl substances (PFAS), polycyclic aromatic hydrocarbons
(PAHs). The second contaminant class represents inorganics
that include trace metals, metalloids, and some metal-based
pesticides (Wood, 2012). Further, it is not uncommon to see
mixtures of contaminant classes particularly during extreme
weather events such as storm water runoff during heavy
precipitation, or through industrial practices like hydraulic

fracturing, all of which may cause a cascade of chemicals into
the environment at once.

The issue of contaminants is particularly severe for fish in
freshwater habitats, where exposure could occur via water-
borne, dietary or sediment exposure and where factors such
as their physiology and the physiochemistry of the water
heighten their vulnerability to contaminants. Freshwater fish,
being hyperosmotic to their surroundings, constantly lose ions
across their body surface through diffusion. To counteract
this, they must actively absorb ions against a concentration
gradient, a process that critically depends on effective ion
uptake from the environment (Evans et al., 1999). Conse-
quently, contaminants that disrupt ion regulation are partic-
ularly toxic to these fish (Wood, 2012). In the case of trace
metals, this toxicity is exacerbated by freshwater chemistry,
which limits complexation (the combination of atom groups,
ions, or molecules to form larger molecules) and competi-
tion (two or more types of molecules can bind to the same
site on another molecule), factors that reduce trace metal
bioavailability, and thus toxicity (Di Toro et al., 2009, Wood,
2012). There is a growing recognition of the importance of
integrating physiological traits into conservation strategies
to assess contamination-related risks within aquatic environ-
ments, helping to safeguard freshwater ecosystems.

A prime example of conservation physiology in action
is the study of silver (Ag+) toxicity in freshwater organ-
isms. Silver contamination in freshwater ecosystems origi-
nates from natural leaching, anthropogenic activities such
as mining, and, historically, from photographic processing
(Wood et al., 2009). In the late 20th century, concerns emerged
regarding silver used in photo processing, particularly because
regulatory frameworks focused only on total metal concen-
tration without considering metal speciation (e.g., Ag+ vs.
AgCl) (Adams et al., 2002). Laboratory-based toxicological
assessments using model species such as Daphnia magna and
rainbow trout (Oncorhynchus mykiss) revealed that these
organisms were extremely sensitive to silver toxicity, with
median lethal concentrations recorded in the low μg/L range.
Further research demonstrated that only ionic silver (Ag+) is
bioavailable and toxic, whereas other forms of silver, such
as AgCl, are not. The physiological basis for this selec-
tivity lies in the fact that ionic silver mimics the essential
ion sodium (Na+), allowing it to be taken up by sodium
transport pathways in the gill epithelium (Wood, 2012). In
contrast, other silver species cannot utilise these pathways,
preventing them from entering the organism, bioaccumulat-
ing, and causing toxicity. Any aquatic environmental variable,
such as low pH, that promotes the formation of Ag+, will
enhance silver toxicity to the organism, and would need to
be accounted for in toxicity studies. Recognizing the phys-
iological basis for Ag+ toxicity has led to the development
of site-specific water chemistry models and geochemical tools
used by regulatory bodies to predict metal toxicity (Glover,
2018).
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Noise & light pollution
Anthropogenic noise and light pollution are pervasive stres-
sors for freshwater fish, as they rely on sound and vision
for cues coordinating reproduction, detecting predators, and
identifying habitat (Longcore and Rich, 2004, Mickle and
Higgs, 2018, Perkin et al., 2011, van der Sluijs et al., 2010).
Since many freshwater ecosystems are located near urban
developments, noise and light pollution threaten the recep-
tion of the sensory information that fishes rely upon. There
is evidence that noise increases glucocorticoid production
(Crovo et al., 2015, Wysocki et al., 2006) and cardiac output
(Graham and Cooke, 2008) in freshwater fish and can induce
hearing loss (Crovo et al., 2015, Smith et al., 2004). A
recent meta-analysis of 42 fish studies (not freshwater spe-
cific) revealed that, generally, anthropogenic noise increased
movement and reproduction related behaviours, decreased
foraging behaviors, increased the hearing threshold (animals
had more difficulty hearing), and increased physiological
indicators of stress (Cox et al., 2018). Characterising the
impacts of light and noise pollution on fish physiology and
behaviour allows managers to mitigate these threats. Light
pollution is well-documented to have effects on organisms,
including freshwater fish (e.g. Foster et al., 2016; Tarena et al.,
2024; Vowles and Kemp, 2021), leading to several initiatives
aimed at reducing artificial light at night (ALAN) around
the globe (Clavier, 2024). Light underlies biological rhythms
via changes in diel, lunar and seasonal cycles, and organisms
are tuned to these periodic light changes via their circadian
rhythms to balance physiological functions and behaviour to
time of day, lunar phase and time of year. Circadian rhythms
play a particularly important role in the repair and recovery
of physiological functions during periods of rest or dormancy
(Aronson et al., 1993). Studies have shown that disruptions of
circadian rhythms can lead to a reorganisation of the entire
physiological state of an organism, including the suppression
of melatonin (Brüning et al., 2015). For example, light pol-
lution found on docks and shoreline habitats, even intermit-
tent sources, can increase activity levels in fish, potentially
impacting energy expenditure and behaviours such as nest-
guarding by smallmouth bass (Micropterus dolomieu) (Foster
et al., 2016). Given that urban development is rampant, noise
and light pollution will continue to threaten the well-being of
fish in freshwater ecosystems (Hölker et al., 2023).

Reproductive periods are particularly challenging for many
species of fish (Dahlke et al., 2020) and may represent a time
of heightened vulnerability to the effects of noise (Blom et al.,
2019, de Jong et al., 2018, de Jong et al., 2020, Nedelec
et al., 2017, Sierra-Flores et al., 2015). To study the effects
of noise on maternal care and brood development, Butler
and Maruska (2021) exposed mouth-brooding African cichlid
(Astatotilapia burtoni) females to 3 h of noise (140 dB) half-
way through their brooding period. Fifty-five percent of the
females exposed to noise cannibalised or released their young
prematurely, compared to 10% of the control females. Using
RNA-seq analysis, the authors found that transcripts related

to feeding and brood care were differentially expressed in
the group treated with noise. Furthermore, juvenile fish from
broods exposed to noise had lower body condition, altered
head transcriptomes, delayed onset of adult colouration and
behaviour, and higher mortality compared to those from the
control treatment broods. Conservation physiology studies
have clearly demonstrated disruptions to the physiology and
ecology of fishes exposed to these threats, underscoring the
need to reduce them. We are not aware of examples of studies
that have specifically influenced management related to light
and noise pollution in freshwater fishes, but such examples
do exist within the marine and terrestrial realms. These
include the “Lighting the right place, at the right time, when
it is needed” approach in France for example (Lapostolle
and Challéat, 2020). A similar approach could be used in
freshwater (Harrison and Gray, 2024, Pérez Vega et al., 2024).

Infectious diseases
Fish disease in freshwater systems can be detectable from
a physiological perspective as a decrease in a host’s ability
to meet basic fitness demands (e.g., feed, reproduce, avoid
predation). Pathogens come in many forms (viruses, bacteria,
parasites, etc.) and are ubiquitous in freshwater environments,
but only cause disease under conditions which compromise
both the host and environment. Extreme infectious disease
outbreaks may be visible as mass die-offs, but less dramatic
impacts can also affect the productivity and resilience of
freshwater fish populations, especially in the context of cumu-
lative stressors related to climate change and urbanisation
(Lane et al., 2020). Physiological tools can be used to detect
changes that indicate disease potential and, when combined
with shifts in pathogen loads, tell a comprehensive story of
wild fish health that can inform management. These tools
may be applied at single or multiple levels of biological organ-
isation to identify markers at genomic (e.g., immune gene
regulation, pathogen genetic material in host, eDNA), cellular
(e.g., immune cell migration, histology), organismal (e.g.,
organ function, energetics), or para-organismal levels (e.g.,
mucosal microbiota) and can also be paired with behavioural
assessments (e.g., observation, telemetry).

Physiological research can reveal how fish immune
responses and disease potential respond to changes in
environmental conditions. Temperature can modulate the
type of immune response a host will elicit; for example,
a study of perch (Perca fluviatilis) found that specific
recognition (adaptive immunity) was higher in fish reared at
elevated temperatures (Marnila and Lilius, 2015). However,
decreased temperatures can also slow physiological responses,
including the recognition of and defence against pathogens.
Chandra et al. (2023) found that the reaction of lymphocytes
(innate immune response) from the anterior kidney and spleen
of male snakeheads (Channa punctatus) had a three-month
rhythm in their reaction to three different mitogens and that
these rhythms peaked in the same months. They also observed
a slowing of the immune response during winter conditions
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when the energetic cost of immunity is relatively high due
to lower nutrient intake during these months. Predicting
and addressing emerging threats to freshwater fishes can be
achieved by linking energetic capacity and immunity, thereby
considering each animal as a system in which pathogens can
thrive or perish. Understanding how fish immune responses
are adapted to seasonality can inform responses to disease
in fish, especially as environmental conditions change in
response to climate change.

Considering the Human Dimension
in Freshwater Fish Conservation
Physiology
One of the hurdles for freshwater conservation physiology,
indeed for all of science, is the historical restriction of
participation in the scientific and conservation processes
to those with the access and means to obtain training in
western science methodologies. Despite studies demonstrating
the positive impact of involving people of diverse identities
in research efforts (Birnie-Gauvin et al., 2023; Fehr, 2011;
Intemann, 2009; Smith-Doerr et al., 2017), many identities
have been excluded from participating in the fields of
conservation physiology and fisheries science through lack of
opportunity, passive inaction, bias, discrimination, and active
exclusion (e.g., persons of color, LGBTQIA+ individuals,
female-identifying persons, those with low socioeconomic
status, etc.) (Bernard and Cooperdock, 2018, Li and Koedel,
2017). The slow pace with which the field has addressed
these harmful practices has held back the advancement of
conservation physiology. For example, by not valuing the
voices and perspectives of indigenous peoples and local com-
munities, scientists have limited their ability to ask relevant
or informed questions about freshwater species and systems.
By working with local communities and valuing traditional
knowledge systems, we can build collective understandings
that benefit both research and traditional land and water
stewards (Naskar et al., 2017, Reid et al., 2022). For example,
freshwater conservation physiology was leveraged to help win
a British Columbia Supreme Court case Thomas and Saik’us
First Nation v. Rio Tinto Alcan Inc (2022) by illustrating the
negative impact of warm temperature on migrating pacific
salmon populations (Eliason et al., 2011). Engaging with
a more diverse array of individuals can also help ensure
that work is more meaningfully translated into action.
While studying physiology can help to inform conservation
actions, measurable success in conservation is nearly always
a partnership across sectors to balance the needs and desires
of different user groups.

At the other end of the knowledge pipeline, many physi-
ologists also struggle to meaningfully engage with politicians
and policy makers, perhaps a result of comparative animal
physiology’s historic relegation to academic settings. Collab-
orating with policy makers from the onset of a project ensures

that the final products are both practical and effectively dis-
tributed to end users. This maximises the impact of the labour
and funding invested in data collection and interpretation
(Cooke and O’Connor, 2010, Rose et al., 2020).

Approaches to Addressing Conserva-
tion Physiology Problems on the
Horizon
Here, we have illustrated a suite of conservation issues facing
freshwater fishes and highlighted examples of how physiolog-
ical tools can help shed light on pathways towards effective
management. However, the real world is often complex in
nature and conservation issues rarely occur in isolation (Birk
et al., 2020, Jackson et al., 2016, Ormerod et al., 2010).
While others have detailed the current state of multi-stressor
studies in freshwater systems, limitations in fully factorial
designs and a lack of mechanistic understandings driving
observed biological responses to stressors limit our under-
standing of these potentially interactive threats (see Jackson
et al., 2016, Orr et al., 2024). For example, eutrophication
increases under warming temperatures and causes changes
in oxygen levels as well as in nitrites. Similarly, rising tem-
peratures can increase susceptibility to infectious diseases,
potentially increasing the invasion potential for pathogen-
resistant species. Multiple concurrent stressors are not only
extremely common, but are also generally understudied due
to the increased cost and inherent difficulty associated with
determining causal relationships (Lima et al., 2023). Whether
simultaneous application of threats has additive, synergis-
tic, or antagonistic impacts is situationally dependent (Orr
et al., 2024), although a recent meta-analysis has shown a
high prevalence of masking effects in multi-stressor scenarios
(Morris et al., 2022). The authors feel that conservation
physiology is uniquely positioned to tease apart the impacts
of multi-stressor experiments by emphasizing causal mech-
anisms rather than relying upon correlative observations.
This mechanistic perspective has been shown to improve
habitat modelling using single stressors (e.g., temperature;
Patterson et al., 2016), and a similar approach holds promise
for multiple concurrent stressors (e.g., hypoxia and temper-
ature; Arend et al., 2011). A physiological approach still
must reconcile the logistical, financial, and methodological
challenges of factorial experiments, as well as the challenges
of characterizing threshold effects, and time courses of expo-
sure to threats. However, by emphasizing process at the
individual and population level, we feel physiology is one
of the more promising paths towards effective conservation
measures.

It is an urgent challenge for the field of freshwater fish con-
servation physiology to reconcile the mechanistic understand-
ings with management actions at broad spatial and temporal
scales (see also Harper et al., 2021). Here, the authors summa-
rize what we feel to be some important guiding questions that
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Figure 2: Physiological tools that can be used across levels of biological organisation to inform freshwater conservation. Created in BioRender,
(Hardison, E. (2025) https://BioRender.com/g65t345).

help researchers design conservation-minded physiological
experiments with high impact: (1) How does the intensity,
frequency, and duration of the threat impact physiological
responses, and how does this vary with species, life stage,
nutritional state, or other co-stressors? (2) How do stan-
dard physiological metrics (e.g., AS, CTmax, blood cortisol)
translate to behavioural or other sub-lethal changes which
can impact overall fitness, and what additional biomarkers
can be identified that are predictive of performance/fate?
(3) What are the epigenetic impacts of stress, and how can
these be mitigated? (4) What has driven past conservation
successes and failures, and can these lessons be scaled/adapted
to different environments? (5) How can freshwater scientists
work more closely with community partners (including but
not limited to indigenous peoples, recreational users, fish-
ers, and policy makers) throughout the research process to
improve transparency, knowledge sharing, and the efficacy
of management plans relative to socio-economic and cultural
contexts?

Conclusions
Freshwater fishes are facing serious conservation threats.
Here, we have illustrated how various physiological tools can
inform freshwater fish management in the face of numer-
ous stressors (applied both in isolation and concurrently)
and highlighted some exciting new developments that will
continue to grow the applicability of physiological data in
freshwater conservation (Figure 2). Despite the challenges
in linking physiology to application (Cooke and O’Connor,
2010), we believe that physiology is essential in the creation of
effective conservation strategies. Physiology has the capacity
to explain how individuals interact with their habitats and
ecosystems, thus driving life’s processes including behaviour,
fitness, and mortality. By leveraging the wealth of physiolog-
ical tools at our disposal, we have an opportunity to increase
the efficacy of conservation policies in freshwater systems and
improve our ability to build sustainable communities for years
to come.
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