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 I 

ABSTRACT 

Biotelemetry is widely used to study the behaviour and survival of migrating adult Pacific 

salmon, but little is known about if and how the tagging process and burden of the transmitter 

pose risks to the study animal. Minimizing the adverse impacts of tagging is important for 

reasons of animal welfare, but also to accurately derive representative data from tagged 

individuals. In Chapter 2, I compare the short-term physiological responses of adult sockeye 

salmon tagged either via gastric insertion or external attachment to untagged controls and report 

no differences in physiology between the treatment groups. In Chapter 3, I monitored the 

movement and status of gastrically and externally tagged individuals and reported that externally 

tagged fish were almost twice as successful in reaching spawning grounds than gastrically tagged 

individuals. These results reveal that the failure to detect immediate physiological disturbances 

and behavioural differences in tagged adult migrating Pacific salmon does not negate the 

possibility that long-term tag-specific adverse effects may occur.  
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CHAPTER 1: Introduction 

The movement of animals within and across landscapes is associated with important 

biological processes that are integral for survival; consequently, understanding these movements 

is critical for conservation (Nathan et al. 2008; Kays et al. 2015). Biotelemetry has provided 

tools for studying the movement behaviour, ecology, and ecophysiology of wild fish (Cooke et 

al. 2004a; Cooke et al. 2012). The earliest use of biotelemetry to study fish occurred when 

Trefethen et al. (1956) externally attached acoustic transmitters to adult salmon to monitor dam 

passage behaviour on the Columbia River in Washington. Since this pioneering study, important 

technological advances have occurred and biotelemetry is now a common tool in fisheries 

sciences (Lucas and Baras 2000; Cooke et al. 2004a; Block 2005; Nielsen et al. 2009). Recent 

technological advances have allowed transmitters to become smaller and lighter, for the 

incorporation of sensors that measure various environmental parameters, and for the ability to 

remotely monitor a tagged individual in real time via orbiting satellites (Block 2005). Given the 

complex logistical challenges associated with studying fish behaviour, physiology and survival 

in the wild, electronic tagging tools have provided remarkable insight into complex movements 

of wide-ranging species, such as those that undertake vast migrations that span shallow 

freshwater streams to the high seas.  

A key assumption of telemetry studies is that the attachment and burden of the electronic 

transmitter does not adversely affect the behaviour and survival of the tagged individual; 

however, this assumption is rarely acknowledged and even less often tested (Murray and Fuller 

2000). Indeed, the stress response elicited by a tagging event requires a period of metabolic 

recovery to regain physiological equilibrium and normal performance (Bridger and Booth 2003). 

The acute stress response caused by the capture event, associated handling, and attachment or 
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implantation of the tag can be exacerbated to chronic costs to the animal if latent effects remain 

(Broell et al. 2016). To investigate potential sublethal and lethal effects of tagging in salmon, this 

thesis compares two electronic transmitter attachment techniques to determine best practices for 

tracking migrating adult sockeye salmon (Oncorhynchus nerka) using endpoints related to 

physiology, behaviour, and survival. 

Transmitter attachment methods 

A variety of transmitter attachment methods and tag types allows for application to taxa 

with different physical characteristics (i.e. size, morphology, locomotor processes, wound 

healing abilities, tag retention rates), in numerous life history stages, and living in various 

aquatic environments. Methods of applying electronic transmitters to fish include: 1) external 

attachment, 2) gastric insertion, and 3) intracoelomic implantation via surgery (Cooke et al. 

2012). Transmitter attachment techniques are important to consider in the design of a telemetry 

study to ensure that the method of choice is least invasive to the study species and to minimize 

any bias created by differential tagging effects (Bridger and Booth 2003; Cooke et al. 2012). A 

general rule of thumb for safe tag weight is less than 2% of the body mass of the fish, but few 

experiments have explicitly investigated the validity of this rule (Cooke et al. 2012). In addition, 

duration of the experiment must be considered when examining appropriate transmitter 

attachment methods and tag types. Anesthesia is sometimes used prior to attaching a transmitter 

to the experimental fish to decrease muscle movement and facilitate handling (Bridger and Booth 

2003). However, there are a number of situations in which use of an anesthetic is not appropriate, 

particularly for field-based projects, such as the dangers that chemical anesthesia pose to human 

health if the experimental fish is consumed, and logistical limitations to the use of 

electroanesthesia or CO2 in the field (Cooke et al. 2013). 
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External attachment and gastric insertion are most commonly used in the relatively short-

term investigations of migrating adult Pacific salmon (6-8 weeks; Brown et al. 2011). Gastric 

tags are inserted by guiding the transmitter through the esophagus and into the stomach of the 

fish using a smooth plunger (Cooke et al. 2012). Advantages of the gastric insertion method 

include rapidity of the procedure, minimal training required by the tagger, placement of the tag at 

the fish’s center of gravity, protection from the outside environment, and limited drag force 

impacting swimming performance (Bridger and Booth 2003). Disadvantages include the 

potential for perforation or other injury to the stomach lining and abrasions to the corner of the 

mouth due to the protruding antenna (Bridger and Booth 2003). External transmitters are often 

attached with steel wires or strong thread through the dorsal musculature (Thorstad et al. 2013). 

This attachment method requires more skill by the tagger than gastric insertion and longer 

handling times, which may cause increased stress to the experimental fish (Jepsen et al. 2015). 

Disadvantages include possible interference of the tag with the streamlined body shape of the 

fish and increased drag (Thorstad et al. 2000), entanglement in aquatic vegetation and fishing 

gear (Rikardsen and Thorstad 2006; Mellas and Haynes 1985), increased vulnerability to 

predation (Beguér-Pon et al. 2012), and fouling of the immediate area around the tag (Thorstad 

et al. 2013; Jepsen et al. 2015).  

Assumptions in biotelemetry 

The assumption that tagged individuals are representative of their population is a central 

tenant of biotelemetry studies (Brown et al. 2011). However, the attachment of an electronic 

transmitter inherently poses a risk to the study animal. The capture event, associated handling, 

attachment or implantation of the tag, burden of the tag, as well as possible confinement and 

transportation before release, can contribute to acute and chronic stress responses. Minimizing 
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the adverse impacts of tagging is important for reasons of animal welfare, but also to ensure that 

the data collected accurately reflect the behaviour of the species being studied (Jewell 2013; 

Kays et al. 2015). There are examples of varying degrees of negative effects of different tag 

types on particular animals (Murray and Fuller 2000). For example, marking techniques have 

shown to significantly impact growth, survival, behaviour, physiology, reproduction, parasitism, 

disease, and predation for certain species of birds, mammals, reptiles, amphibians, and fish 

(reviewed in Murray and Fuller 2000). Another assumption central to tagging studies is that tags 

are retained for the duration of observation, rates of which vary between tag attachment method 

and study species. For salmonids, gastric tags are susceptible to regurgitation but retention rates 

are generally high (98% in Ramstad and Woody 2003; 96-98% in Keefer et al. 2004a; 90% in 

Corbett et al. 2012). The constriction of the esophagus creates a suction that aids in the retention 

of the gastric tag. External tags tend to have high retention rates as well (Gray and Haynes 1979) 

but have been shown to shed after time for tagged fish held in concrete environments (Corbett et 

al. 2012). Estimating tag retention is often difficult in the wild because differentiating between 

the detection patterns of a rejected tag and those of a dead fish is often impossible, and in studies 

where secondary tags are used, most fish are rarely recaptured to allow for inspection of tag 

retention (Keefer et al. 2004a). The key to any successful telemetry study is the power of the 

researcher to derive representative data from tagged animals (Bridger and Booth 2003). 

Ultimately, if tagging causes changes in fish behavior or health or if tags are not retained, data 

cannot be generalized to the broader population, which can lead to incorrect conclusions. 

Researchers must make informed decisions about the attachment method for their study in order 

to create an appropriate study design and to reliably interpret the tagging data.  



 5 

Despite acknowledgement of the potential for tags to influence the welfare of study 

animals and that tag loss may occur for any telemetry study, sub-lethal effects and tag-related 

mortality are rarely estimated or even acknowledged (Murray and Fuller 2000; Drenner et al. 

2012). In a survey of 238 ecological studies, Murray and Fuller (2000) indicated a tendency for 

studies that show significant negative effects to be published over those failing to show effects, 

which can cause a misrepresentation of the effect of tagging and inhibit dissemination of 

information about the best marking methods. Additionally, if significant tagging effects remain 

undetected or unaddressed, conservation and management decisions based on those results might 

not be appropriate (Murray and Fuller 2000).  

 Physiological consequences associated with a tagging event 

Wild fish are exposed to natural and anthropogenic stressors. The recognition of a real or 

perceived threat by the central nervous system causes a stress response that elicits a suite of 

physiological and behavioural responses (Barton 2002). The response to stress is considered an 

adaptive mechanism that allows fish to mitigate the negative consequences of a stressor(s) in 

order to maintain homeostasis (Barton 2002). Primary physiological responses to stress include 

endocrine changes that can be characterized by increases of circulating catecholamines and 

corticosteroids (Barton 2002). Activation of the hypothalamic-pituitary-interrenal (HPI) axis 

stimulates the release of adrenocorticotrophic hormone (ACTH) from the anterior pituitary 

region (Schreck et al. 2001; Barton 2002). ACTH is a promoter hormone responsible for 

triggering the release of corticosteroids (i.e., cortisol) into circulation (Mommsen et al. 1999). 

Cortisol elicits the secondary physiological responses that include the catabolism of 

carbohydrates, proteins, lipids, and the release of ions into the blood stream (Barton 2002). 

Secondary responses include changes in metabolism, hydromineral balance, and cardiovascular, 
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respiratory, and immune functioning (Barton 2002). If the intensity of the stressor is severe or 

long lasting, the stress response may no longer be adaptive and become dysfunctional, leading to 

tertiary stress responses, which are whole-animal changes in performance such as in growth, 

disease resistance, behavior, which ultimately affect survivorship and fitness (Wendelaar Bonga 

1997; Barton et al. 2002). If the intensity of the stressor is severe or chronic, physiological 

response mechanisms may become strained, which can negatively influence the probability of 

survival (Barton et al. 2002).  

To quantify an individual fish’s stress response, biochemical indicators can be measured 

in blood plasma to assess the physiological condition of a fish. A primary indicator is circulating 

cortisol, which is the principal corticosteroid in teleosts. Secondary indicators include plasma 

lactate, plasma glucose and ions (potassium, sodium, chloride) and plasma osmolality. The 

secondary physiological changes that occur tend to take longer to manifest themselves in 

circulation than primary responses, from minutes to hours, but often remain altered for more 

extended periods (Barton 2002). Indeed, many exercise-related changes observed in blood 

plasma are driven by changes within the musculature, and thus muscle tissue may provide a more 

direct and sensitive measure of anaerobic exercise in fish (Pon et al. 2012). The depletion of 

anaerobic substrates, such as glycogen, generates metabolic wastes, which can be measured from 

tissue samples (Milligan 1996; Kieffer 2000). For example, lactate, the metabolic end product of 

anaerobic glycolysis, initially accumulates in muscle tissue but can also leak into the circulatory 

system (Kieffer et al. 1994; Wang et al. 1994). Using both plasma and muscle samples to assess 

physiological parameters is common in lab-based studies (Black et al. 1962; Milligan and Wood 

1986; Wang et al. 1994), but is more rarely applied to field-based studies. However, it has been 

successfully applied in a field study assessing passage efficiency of fishway structures for pink 
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salmon, and demonstrated that muscle tissue exhibits a greater sensitivity to exercise-related 

physiological changes than blood (Pon et al. 2012). 

Study species  

Sockeye salmon are a semelparous and anadromous species of Pacific salmon that 

migrates from the ocean to natal freshwater streams and lakes for a single spawning event and 

dies soon thereafter (Scott and Crossman 1973). Sockeye salmon from the Fraser River 

watershed in British Columbia are an economically, ecologically, and culturally important 

species that has experienced abnormal migration timing and declines in productivity in recent 

decades (Lapointe et al. 2003). This phenomenon inspired a federal judicial inquiry and 

increased funding and interest in examining the potential causes of this decline.  

Adult sockeye salmon cease feeding in the ocean prior to their freshwater migration, 

therefore endogenous energy stores fuel all upriver swimming and associated physiological 

changes (Mommsen et al. 1980; Burgner et al. 1991). Sockeye salmon undergo important 

physiological changes during this life history stage and are sensitive to adverse environmental 

conditions or anthropogenic interactions (Hinch et al. 2006). Their osmoregulatory systems, 

plasma sex hormone concentrations, lipid content, cortisol levels, and other physiological 

variables are constantly changing throughout the migration and while on spawning grounds. 

Location, timing, and method of capture, as well as tag types, tagging methods, the use of 

anesthetics, handling time, tag size and release technique (e.g. recovery period) can all alter 

behaviour, cause physiological imbalances, and alter the probability of pre-spawn mortality 

(Cooke et al. 2011; Drenner et al. 2012). The magnitude of the physiological response to a 

stressor can be quantified by measuring concentrations of biochemical indicators in the blood 

plasma and muscle tissue. However, stress responses typically revealed with blood physiology 
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are not always clear mortality predictors in migratory adult salmon. Part of the difficulty lies 

with obtaining good baseline measures and the additional problem that plasma cortisol increases 

progressively with maturation and independently of stress (Carruth et al. 2002; Cooke et al. 

2012). Increased plasma cortisol is an adaptive response to a stressor and is often naturally 

upregulated in migratory adult salmon in response to this challenging life history stage (Carruth 

et al. 2002).  

Today, telemetry is widely used in fisheries monitoring and research of Pacific salmon 

throughout the northeast Pacific. Telemetry has helped us learn more about the behavior and 

survival of juvenile salmon migrating past dams (Steig et al. 2005; Ploskey et al. 2008), as well 

as in estuary and near-shore ocean environments following post-smolt migration (Lacroix et al. 

2005; Semmens 2008). Telemetry has also yielded novel insights into adult salmonid migration 

biology (Hinch et al. 2002; Cooke et al. 2004b), specifically spawning migration patterns 

including the timing of river entry, travel speeds, and mortality (Hinch and Bratty 2000; English 

et al. 2005). Mortality is a key parameter in population models and telemetry can identify natural 

mortality (Cooke et al. 2004b) and post-release mortality from commercial fisheries (Candy et al. 

1996). Furthermore, telemetry has been used to quantify the consequences of angling, beach 

seining, and confinement of adult sockeye salmon during upriver migration (Donaldson et al. 

2011), the influence of post-capture ventilation assistance following catch-and-release (Robinson 

et al. 2015), and dam and reservoir passage rates and survival in a hydrosystem (Keefer et al. 

2004b). Telemetry is therefore entrenched as a key tool employed by researchers and fisheries 

managers in answering fundamental and management questions associated with migrating 

Pacific salmon. However, few efforts have been made to quantitatively assess and characterize 

the effects of tagging on adult Pacific salmon. In a recent synthesis on salmon tagging in marine 
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environments, it was found that most biotelemetry studies have focused on the juvenile portion 

of the salmon life cycle (Drenner et al. 2012). Of those studies, only 10.6% assessed 

tagging/handling effects, and an acknowledgement of potential tagging/handling effects was 

made in only 33.8% of publications (Drenner et al. 2012). More attention to the effects of tags 

and research on the subject is needed to understand the long-term influences of electronic 

transmitter attachment on adult Pacific salmon. Not only is this information crucial to researchers 

designing telemetry studies or interpreting tagging data but it will also directly inform fisheries 

management models that use telemetry tags and facilitate stakeholder adoption of studies that use 

electronic tags. 

The Harrison River sockeye salmon population from the Fraser River watershed was 

studied in this thesis. This population has maintained high abundances in recent years in contrast 

to many other Fraser River sockeye salmon populations (Fig. 2.1; Peterman and Dorner 2012; 

Beamish et al. 2016). Several tagging studies have occurred on adult Harrison River sockeye 

salmon in the past, employing methods such as Petersen disc tagging, gastric tagging, and 

external tagging, using both acoustic and radio technologies (i.e. Department of Fisheries and 

Oceans Stock Assessment Program; English et al. 2005; Mathes et al. 2010; Donaldson et al. 

2012; Robinson et al. 2015). Past tagging studies have provided information relevant to the 

relative survival of adult Harrison sockeye salmon (English et al. 2005), however no research has 

been specifically designed to quantify the tag-related effects. The lack of validation of different 

transmitter attachment methods may result in over- or underestimation of survival, migration 

timing, straying behaviours, and holding behaviours of salmon during migration. Given the 

ecological and socio-economic importance of Pacific salmon, understanding the potential 
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consequences of different tagging methods on fish behaviour, physiology and survival is 

important to inform study design and data interpretation.   

Thesis rationale and objectives  

For anadromous salmonid species, studies have shown that the tagging process and the 

presence of an electronic transmitter can have adverse effects at different life history stages. In 

the smolt or juvenile stage, tag to body size ratio is particularly important to consider in order to 

maintain normal performance, growth, and survival (McCleave and Stred 1975; Adams et al. 

1998a; Adams et al. 1998b; Chittenden et al. 2009). For adults, the attachment and presence of a 

telemetry tag has been shown to result in failed passage of hydroelectric dams (Gray and Haynes 

1979), reduced swimming ability (Mellas and Haynes 1985), and differences in survival (Corbett 

et al. 2012). This is the first study to comprehensively investigate the influences of different 

tagging methods on adult migrating sockeye salmon using both short-term (physiological) and 

long-term (behavioural and survival) endpoints. 

 The goal of this thesis is to compare gastric and external tagging techniques on adult 

Harrison River sockeye salmon to assess the effects on behaviour, physiology, and fate in wild 

fish. Chapter 2 reports the findings from a riverside holding study that compares the short-term 

responses of blood plasma and muscle metabolite variables of adult sockeye salmon tagged 

either via gastric insertion or external attachment and untagged controls. The physiological 

response profiles 1 and 4 h post-tagging were compared to those of untagged controls to assess 

the magnitude of the stress response elicited by the two attachment procedures. In Chapter 3, a 

telemetry study was conducted to compare the behaviour and fate of sockeye salmon affixed 

with either a gastric or external radio tag. In both Chapters 2 and 3, the influence of sampling 

period on the physiology, behaviour, and survival of sockeye salmon post-tagging was assessed. 
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Furthermore, the transmitter attachment techniques were consistent in the methodology of both 

chapters, thus coupling physiological and telemetry perspectives to generate a comprehensive 

study of the short- and long-term consequences of tagging. Chapter 4 includes a synthesis of my 

results, implications of this research for fisheries management and researchers, and possible 

areas for future studies.  
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CHAPTER 2: The effects of different transmitter attachment methods on the physiology of 

adult sockeye salmon  

ABSTRACT 

A premise of telemetry studies is that the tagging techniques do not compromise the 

welfare, behaviour, or fate of tagged fish. It is common to tag Pacific salmon to learn about their 

migration biology and to inform fisheries management, but it is unclear which tagging methods 

induce the least physiological disturbance. In this study, female adult Harrison River sockeye 

salmon Oncorhynchus nerka were radio-tagged by gastric insertion or external attachment, and 

their physiological response and recovery were measured and compared to that of control fish. 

Experiments were conducted during two distinct time periods representing an early season when 

fish were new arrivals to the freshwater system and less sexually mature, and a later season when 

fish had been staging in the freshwater environment for some time and were closer to spawning. 

Plasma levels of cortisol, glucose, lactate, sodium and potassium, as well as concentrations of 

white muscle lactate and glycogen were measured after fish were held for 1 or 4 h post-treatment 

in flow-through riverside pens. There were no differences in the physiological responses 

following gastric and external tag attachment, and tagged fish showed similar response profiles 

to those of untagged control fish. Concentrations of most physiological variables returned to 

baseline levels similar to those reported in other studies of the recovery of adult Pacific salmon 

following an acute stressor; however, plasma lactate and cortisol remained elevated, indicating 

the potential for negative consequences to metabolic recovery and the ability to burst-swim. 

Perforation of the intestinal wall was observed in 66% of gastrically tagged fish in the late 

sampling season in contrast to 0% in the early sampling season; however, stomach perforation 
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was not associated with any distinct physiological disturbances 1 or 4 h post-treatment. This 

study concludes that the capture and handling associated with a tagging event are stressful, while 

the addition of the transmitter, regardless of external or gastric tagging methods, is non-additive 

over the relatively short assessment period. The long-term consequences of gastric or external 

transmitter attachment methods on fish physiology, behaviour and survival must be understood 

in order to determine which technique is less invasive and best suited to a particular study 

design.  
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INTRODUCTION  

Advances in electronic tagging and tracking technology provide researchers with 

unprecedented opportunities to study wild fish in their natural environment (Cooke et al. 2013; 

Hussey et al. 2015). These tools have provided remarkable insight on complex fish behaviours 

and survival, and are now a fundamental part of fisheries monitoring and research toolboxes. A 

central tenant of tagging studies is the assumption that the behaviour of tagged individuals is 

representative of their population (Murray and Fuller 2000; Brown et al. 2011). Adverse effects 

on behaviour and survival caused by transmitters or the tagging process will result in a bias and 

limit the application to the broader population (Mellas and Haynes 1985). There are current 

doubts surrounding individual tagged fish being truly representative of non-tagged counterparts 

and, as a result, stakeholders and fisheries managers are wary in interpreting these data (Cooke et 

al. 2013; Young et al. 2013). Minimizing the adverse impacts of these tags is important for 

reasons of animal welfare, but also to ensure that the data collected accurately reflect the 

behaviour and survival of the species being studied (Kays et al. 2015). The impacts of tagging 

techniques on salmonids have been studied to supplement field studies or to determine tag limits 

for certain species; however, most of these studies have taken place in laboratory settings and 

have focused primarily on juvenile fish (Drenner et al. 2012). 

Electronic tagging has yielded novel insights into the behaviour and survival of adult 

Pacific salmon on their homeward spawning migration, such as the energetics of migration 

(Hinch and Bratty 2000; Wilson et al. 2013), the consequences of capture and release fisheries 

(e.g., Candy et al. 1996; Donaldson et al. 2011; Raby et al. 2014) and hydropower interactions 

(e.g., Matter and Sandford 2003; Keefer et al. 2004b; Ferguson et al. 2006; Burnett et al. 2014). 

However, adverse effects associated with the presence of electronic transmitters on adult 
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salmonids have been reported and include failed dam passage (Chinook salmon: Gray and 

Haynes 1979), decreased survival (Chinook salmon: Corbett et al. 2012), and irregular 

swimming patterns (rainbow trout: Mellas and Haynes 1985). These behavioural observations 

warrant further investigations to identify the physiological mechanisms that underlie such 

negative consequences.  

The transmitter attachment techniques primarily used to monitor the behaviour and 

survival of adult migrating Pacific salmon are gastric insertion and external attachment. Surgical 

implantation is a third option, but is rarely used in field settings due to longer handling times, 

logistical constraints associated with the use of anesthetics and extra tagging equipment, and the 

risk to human consumption if chemical residues remain in the tissue post-release (Cooke et al. 

2013). Gastric implantation is a common tagging method for semelparous adult salmonids that 

have generally ceased feeding prior to freshwater entry. This tag attachment method is simple, 

rapid, and requires minimal fish handling (Bridger and Booth 2003) but has the potential for tag 

loss due to regurgitation (McCleave et al. 1978; Mellas and Haynes 1985; Smith et al. 1998; 

Keefer et al. 2004a). Additionally, during the spawning migration of Pacific salmon, tissues 

atrophy, particularly in the gastrointestinal tract, and overall condition declines with advancing 

sexual maturity and longer time spent in freshwater (Dickhoff 1989). Thus, the potential of 

stomach perforation for gastrically tagged fish increases (Corbett et al. 2012). An alternative to 

gastric tagging is external attachment. This method requires longer handling time and more skill 

from the tagger but may be more appropriate if tagging is taking place at an early stage in the 

migration when the fish may still be feeding in the marine environment or at a late stage when 

the degenerated gastrointestinal tissues could be damaged by gastric insertion. Evaluation of the 
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short-term physiological response of each tagging method is required to better interpret the 

potential influences on long-term fish behaviour and survival.   

 The attachment of an electronic transmitter to a fish is an acute stressor due to capture, 

handling, tagging, and potentially recovery from anesthetic. The energy demand associated with 

struggling during capture and handling is similar to that required in exhaustive exercise 

(Donaldson et al. 2011). Following such exhaustive exercise, a variety of physiological 

disturbances occur. For example, tissue energy stores (e.g. glycogen, ATP, and creatine 

phosphate) are rapidly depleted, muscle and blood lactate levels increase, ionic homeostasis is 

disturbed, and plasma catecholamines increase (Cameron and Cech 1990; Pagnotta and Milligan 

1991). Excessive energy use during the tagging event could compound the environmental and 

anthropogenic stresses already encountered in the spawning migration. Prolonged recovery 

would presumably represent the primary mechanism underlying any tertiary effects associated 

with tagging (e.g., alterations in behaviour or survival). Indeed, such an accumulation of stress 

could be detrimental to migration and reproductive success (Hinch et al. 2006). Furthermore, the 

burden of the transmitter itself may cause chronic stress post-tagging. Identifying the short-term 

physiological response profiles to different tag attachment techniques may point to potential 

long-term causes of mortality. 

The objective of this study was to compare the short-term physiological consequences of 

different transmitter attachment to untagged controls. Comparisons focused on adult female 

sockeye salmon Oncorhynchus nerka that were staging near spawning grounds and were either 

gastrically tagged, externally tagged or untagged (i.e., control fish). Because telemetry tags are 

applied to sockeye salmon at different stages of the spawning migration and thus over a range of 

physiological and environmental conditions, from in the ocean prior to freshwater entry (Cooke 
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et al. 2005; Wilson et al. 2014; Drenner et al. 2015) to mature fish on or near spawning grounds 

(Schubert and Scarborough 1996; Young et al. 2006; Pon et al. 2009; Pon et al. 2010; Roscoe et 

al. 2011; Burnett et al. 2014), we wanted to assess the effect of maturity on the tagging response 

profile. As such, we had two distinct sampling periods representing an earlier- and later-timed 

group with respect to maturation. We expected our results to provide information on which 

attachment techniques may be least invasive at this life stage and to determine if sampling period 

influenced outcomes. Additionally, these results will be useful in understanding the recovery 

profiles of fish that have undergone exhaustive exercise in the context of a realistic tagging event 

in the wild.  
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METHODS 

All research was conducted in accordance with Canadian Council of Animal Care 

guidelines and scientific collection permits were obtained from Fisheries and Oceans Canada. 

This study took place on the Harrison River, BC, Canada, one of the largest spawning tributaries 

for Pacific salmon of the Fraser River (Fig. 2.1). It is relatively wide (2-3 km in some sections), 

shallow (much of the river is <2 m deep with a thalweg ~7 m maximum depth) and short (16.5 

km total length) (Mathes et al. 2010), and is approximately 100 km upriver from the Fraser River 

mouth. Harrison River sockeye salmon have a protracted river entry pattern, with individuals 

arriving from late July to mid-October. Peak spawning occurs in early- to mid-November 

(Gilhousen 1990).  

The Harrison River sockeye salmon population has maintained high abundances in recent 

years in contrast to many other Fraser River sockeye salmon populations (Peterman and Dorner 

2012; Beamish et al. 2016). Additionally, Harrison River sockeye salmon display a “sea type” 

life history in which juveniles remain in the river for several months after emergence from gravel 

and enter the ocean in spring, while typical “lake type” sockeye salmon will rear in a lake for 

about one year after emerging (Birtwell et al. 1987; Burgner et al. 1991). Furthermore, these 

adult sockeye salmon exhibit unique behaviour during their protracted freshwater waiting period 

prior to spawning in the middle of the river in a rapids area. After entry into the Harrison River 

system, sockeye salmon do not exhibit a linear migratory trajectory towards an upstream 

spawning site. Rather, they move upstream and downstream of the spawning site, sometimes 

milling together in deeper sections of the river or in the lake before spawning. Several tagging 

studies have occurred on adult Harrison River sockeye salmon in the past, employing methods 

such as Petersen disc tagging (common method used by Department of Fisheries and Oceans 
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Stock Assessment Program), as well as gastric and external telemetry tagging using both acoustic 

and radio technologies (English et al. 2005; Mathes et al. 2010; Donaldson et al. 2012; Robinson 

et al. 2015). Over recent years, considerable effort and resources have gone into tagging studies 

of adult Harrison sockeye salmon; however, no research has been specifically designed to 

determine the short-term physiological effects of different transmitter attachment methods. 

Tagging and holding 

Capture, tagging, holding, and biopsy took place on the Harrison River approximately 9 

km from the confluence of the Fraser and Harrison rivers (Fig. 2.1). Tagging took place over two 

periods in 2014, an early sampling period (18 and 25 September; water temperature range = 17.3 

- 18.4°C) and a late sampling period (16 and 23 October; water temperature range = 12.8 - 

13.0°C). This represents fish that are 7 to 8 weeks and 3 to 4 weeks away from peak spawning 

dates, respectively. Adult female sockeye salmon (n = 135; mean body mass = 2354.7 ± 293.3 g; 

mean fork length = 59.0 ± 2.3 cm) were captured by beach seine. Some individuals were 

removed immediately once the seine net was bagged and rapidly sampled to assess physiological 

status (time 0). The period of time from when the seine net was deployed to when time 0 

individuals were sampled ranged from 5 to 33 min, so the time 0 sample was actually taken 

following capture fatigue, which would include some anaerobic exercise and crowding (Wood 

1991; Boutilier et al. 1993; Milligan 1996). A flow-through riverside net pen (dimensions: 2.4 m 

in length, 1.3 m in width, bisected to make two partitions 0.65 m wide, approximately 1 m in 

depth) was used to hold fish for 1 or 4 h, which is consistent with other studies assessing the 

responses of fish to exhaustion (e.g., Wood 1991). There were 3 treatment groups: (1) control, 

untagged fish, (2) gastrically tagged fish, and (3) externally tagged fish. We aimed to have 

groups of 10 fish per treatment, holding time, and sampling period. Control, untagged fish were 
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dip netted from the bagged beach seine and placed directly into the net pen. Fish that underwent 

a tagging treatment were placed in a tagging trough affixed with a pump that allowed fresh river 

water to continuously flow over the mouth, gills, and body throughout the entire procedure. 

Either a gastric or external radio telemetry tag was affixed (procedure outlined in detail in Cooke 

et al. 2012) using established protocols for tagging adult salmon without anesthetic (Cooke et al. 

2005). External tags (model TX-PSC-E-45 from Sigma Eight, 32 mm in length, 10 mm in width, 

9.8 mm in height, and weighed 3.7 g in air) were affixed using two metal pins inserted through 

the dorsal musculature at the base of the dorsal fin and secured by twisting over the ends of the 

pins (Fig. 2.2). Gastric tags (model TX-PSC-I-1200 from Sigma Eight, 43 mm in length, 16 mm 

in width, 16 mm in height, and weighed 15.2 g in air) were inserted through the mouth into the 

stomach using a smooth plunger (Fig. 2.2).  

The tagging procedure was designed to mimic a real study with basic tagging protocols. 

A team of three people assisted with the tagging process: the first person held the fish in the 

trough and reported fish condition and estimated sex, the second individual applied the 

transmitter, and the third person recorded all relevant information. Each fish was assessed for 

capture and release vigor, maturity, and injuries. Sex was estimated by observing secondary 

sexual characteristics and was later confirmed during autopsy. Fish were held in the seine net 

prior to tagging for 6 - 73 min (median 30 min), which is a typical period of time for tagging 

studies (Clark et al. 2010; Nguyen et al. 2014). Immediately following tagging, individuals were 

placed in net pens alongside the untagged control fish. Groups of 9 - 12 individuals were held in 

a net pen during a single holding period, and it took approximately 10 min to load up a net pen 

with fish from all 3 treatments.  
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Blood and tissue collection 

After a treatment group was held for the allotted time period, all fish were quickly 

removed from the pen and euthanized by cerebral concussion. A blood sample was taken 

immediately from the caudal vasculature using a 21-gauge needle and a 3 ml vacutainer syringe 

containing lithium heparin (B.D. Vacutainer, Franklin Lakes, NJ). The blood sample was 

temporarily stored in an ice-water slurry and then centrifuged at 7 000 g for 5 min (Clay Adams 

Compact II Centrifuge). Plasma was flash frozen in liquid nitrogen and stored at -80oC until 

processing. Immediately following extraction of the blood sample, a thin muscle sample (<0.5 

cm thick) was excised halfway between the dorsal fin and the anal fin and across the lateral line 

using a scalpel, blotted to remove excess blood, freeze-clamped in liquid N2 and stored in a -

80oC freezer until processing. A sample of tissue from the adipose fin was removed using a hole-

puncher for DNA analysis and stock determination, and a scale was removed for age information 

and stock composition. Morphometric information (e.g., body mass, organ masses, length) and 

gross somatic energy levels (Distell Fish Fat Meter, Distell, West Lothian, Scotland) were 

recorded for each fish and the stomach was assessed for perforation.  

Plasma sodium and plasma potassium were analyzed using a Cole Parmer Model 2655-00 

Single-channel Digital Flame Photometer. Plasma glucose and plasma lactate were measured 

using a YSI 2300 STAT Plus Glucose/Lactate Analyzer. Plasma cortisol was analyzed using an 

ELISA hormone kit (Neogen Corporation). Methods are described in Farrell et al. (2001). 

Muscle samples were ground to a fine powder under liquid nitrogen using a pre-cooled mortar 

and pestle. Muscle glycogen and lactate were isolated and assayed spectrophotometrically as 

described by Richards et al. (2002).  
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Data analysis and statistics 

All data are presented as mean ± standard error of the mean (SEM), unless otherwise 

indicated. All analyses were conducted in JMP (version 12.0.1). A series of factorial analysis of 

variance (ANOVA) tests were used to examine for differences in plasma metabolites, plasma 

ions, and muscle metabolites. A 3-way ANOVA was used to test for differences in physiological 

variables between untagged, externally, and gastrically tagged fish held for 1 or 4 h over both 

sampling periods. When it was found that tag type had no effect, we removed it from the analysis 

and used 2-way ANOVA on each variable. Where statistical differences were detected post-hoc 

tests were performed. Tukey HSD post-hoc tests were used to determine the nature of the 

differences between the holding time groups. T-tests were used to determine the nature of the 

difference between the sampling periods. Significance levels were set at 0.05. A t-test was used 

to assess differences in physiological variables between fish in the late sampling period with a 

ruptured or intact stomach. To do so, physiological results from fish in the late sampling period 

with an intact stomach from untagged, external, and gastric tag treatments were pooled and 

compared to those from gastrically tagged fish with a ruptured stomach in the same sampling 

period. When assumptions of normality and homogenous variance were not met, the variables 

were transformed or non-parametric ranking tests (for the ANOVA and t-test analyses) were 

used. 
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RESULTS  

The tagging procedures took an average of 14 s (range = 5- 29 s) for the gastric 

procedure, which was significantly faster (t = 13.39, df = 75.98, P < 0.001) than the 45 s (range = 

25 - 101 s) required for external tagging (Fig. 2.3). Throughout the study, one control fish (4 h 

treatment group in the early sampling period) became moribund while in the net pen and was 

removed and euthanized. Gonadosomatic index (GSI) was significantly higher (t = 10.46, df = 

76.23, P < 0.0001) for fish from the later sampling period (range = 12.9 – 24.4%; mean 18.6%) 

than those in the earlier sampling period (range = 4.9 - 19.4%; mean 11.5%) (Fig. 2.4).  

The 3-way ANOVA revealed that despite differences in tagging time, the plasma and 

muscle physiological variables did not significantly differ among control untagged, gastrically 

tagged, and externally tagged sockeye salmon (Tables 2.1, 2.2; for example, plasma lactate, Fig. 

2.5). Furthermore, no significant interactions with tag type were observed (Table 2.2). As such, 

we dropped tag type from subsequent analyses. Doing so enabled us to incorporate a time 0 

sampling period that we only had for untagged fish and thus could not be incorporated into the 3-

way ANOVA. Control untagged, gastrically tagged and externally tagged fish were subsequently 

pooled to examine how the physiological variables varied with holding time (0, 1 and 4 h post 

treatment) and between periods (early and late) (Table 2.3).  

The effect of holding time was significant for all response variables other than muscle 

glycogen, and sampling period was significant for plasma sodium, potassium, and glucose (Table 

2.3). There was no interaction of holding time post-treatment and sampling period (2-way 

ANOVA; Table 2.3). Post-hoc tests indicated the nature of the differences between groups 

within holding time and sampling period (Figs. 2.6, 2.7). The effects of holding time and 

sampling period were analyzed separately because the effect of the interaction was not 
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significant (Table 2.3), indicating that the response variables responded similarly across holding 

times and sampling periods. Plasma sodium concentrations increased significantly from time 0 to 

1 h and then decreased significantly at 4 h to values below time 0 by approximately 5% (Fig. 

2.6a). Plasma sodium was significantly elevated in the late period by ~3% relative to the early 

period (Fig. 7a). Plasma potassium concentrations for time 0 and 1 h were similar, and 

significantly increased by about 52% in the 4 h group (Fig. 2.6b). A significant difference was 

also observed in levels of plasma potassium between sampling periods, with the mean 

concentration measuring 27% greater in the late period than in the early period (Fig. 2.7b). 

Cortisol (Fig. 6c) and plasma lactate (Fig. 2.6d) showed similar trends over holding times, both 

increasing after time 0 and remaining elevated. Plasma cortisol concentrations at 4 h were similar 

to the corresponding 1 h values (Fig. 2.6c), whereas a significant decrease toward time 0 values 

was observed for plasma lactate values at 4 h (Fig. 2.6d). Plasma glucose increased significantly 

from time 0 to 1 h and decreased to an intermediate level after 4 h (Fig. 2.6e). Sampling period 

had a strong effect on plasma glucose in which values in the early period were 38% greater than 

in the late period (Fig. 2.7c). Muscle lactate concentrations were elevated in the time 0 group and 

a significant decrease occurred over time (Fig. 2.6f).  

We observed ruptured stomachs in 66% of gastrically tagged fish in the later sampling 

period (Fig. 2.8), but none in the early sampling period. In our assessments of the stomach 

quality of all fish, we observed thinning of the stomach wall in the later sampling period but only 

saw damaged stomachs in the gastrically tagged fish. However, stomach perforation had no 

significant impact on the physiological response profiles of female sockeye salmon in the late 

sampling period when compared to fish for which the stomach was not ruptured (Table 2.4). 
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During the late sampling period, there was one occurrence of a gastrically tagged female 

regurgitating the tag in the net pen. There was no loss of external tags during the experiment. 
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DISCUSSION 

In comparing the short-term physiological response of wild migrating female sockeye 

salmon radio tagged via either gastric insertion or external attachment to untagged females in a 

field setting, we found no differences in blood and muscle variables 1 or 4 h post-tagging, both 

during early and late periods in the spawning migration. Previous studies that compare the 

effects of tag attachment techniques on adult Pacific salmon and salmonids have focused on a 

number of indicators of fish well being, such as spawning migration timing (Chinook salmon: 

Gray and Haynes 1979), survival (sockeye salmon: Ramstad and Woody 2003; Chinook salmon: 

Corbett et al. 2012), swimming performance (Atlantic salmon: Thorstad 2000) and behaviour 

(rainbow trout: Mellas and Haynes 1985). To our knowledge, this is the first study to report and 

compare quantitative measures of the blood and muscle physiological response of adult Pacific 

salmon tagged with external and gastric radio transmitters to untagged controls in a natural 

environment, and represents an important benchmark towards understanding the physiological 

mechanisms underlying the impacts of the overall tagging event. Furthermore, conducting a 

streamside assessment with 4 h as an endpoint is a novel aspect in the exhaustive exercise 

literature.  

The failure to identify differences in the acute physiological responses between tag types 

and controls suggests that the cumulative effect of capture, handling, and holding with the 

addition of tagging is antagonistic, meaning the combined effect is less than the sum of the 

individual stressors (Johnson et al. 2012). Allowing the fish to recover in the net pen for a period 

of time prior to tagging may have reduced the influence of capture on the stress response profile 

and help isolate the incremental effects of the tagging procedure itself. Disentangling the effects 
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of capture, handling, tagging, and holding on wild fish is an inherent problem in evaluations of 

tagging effects (Jepsen et al. 2015).  

The temporal response profiles of the physiological variables in this study were similar to 

those reported in other field studies looking at the recovery of adult Pacific salmon following an 

acute stressor (Farrell et al. 2001; Raby et al. 2015; time points for blood sampling were 0, 1 h, 2 

h, and 24 h, and 0, 15 min, 30 min, 60 min, and 120 min, respectively). The blood variables here 

exhibited similar patterns, with immediate increases in sodium, lactate, glucose and cortisol (Fig. 

2.6; Table 1 in Farrell et al. 2001; Figs. 3 and 4 in Raby et al. 2015). The decrease of plasma 

sodium following the peak that occurred at 1 h was observed 2 h after capture by Raby et al. 

(2015) but the magnitude with which it decreased over time to below time 0 values was only 

observed when measured after 4 h (Fig. 2.6a) and 24 h of recovery (Farrell et al. 2001). Plasma 

potassium responded differently by immediately decreasing then increasing significantly after 4 

h (Fig. 2.6b), the magnitude of which was not captured <2 h post-stressor (Farrell et al. 2001; 

Raby et al. 2015). This significant increase after 4 h was consistent with the response profile of 

exercised rainbow trout (Wood et al. 1983) in which plasma potassium continued to increase to 

approximately twice the resting values after 2 - 4 h, and resting levels were not restored until 12 

h post-exercise. The pronounced and prolonged rise in plasma potassium is thought to reflect the 

loss of this ion from muscle cells due to exercise (Wood et al. 1983; Sejersted and Sjøgaard 

2000).  

It can be challenging to interpret cortisol concentrations following a stressor in migrating 

adult Pacific salmon because plasma cortisol increases progressively with maturation and 

independently of stress (Carruth et al. 2002). In this study, cortisol levels increased significantly 

from time 0 to about 4.5-fold and remained elevated 4 h post-stressor (Fig. 2.6c). Concentrations 
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of cortisol can stay elevated 6 h or more after a stressor, and increasing plasma cortisol after 

exercise can have negative consequences to the fish, in terms of metabolic recovery (Milligan 

1996) and migration success (Cook et al. 2013). High cortisol levels may hinder muscle lactate 

and glycogen recovery, but knowing whether this was a long-term or chronic elevation could not 

be assessed in this study. Lactate is the metabolic end product of anaerobic glycolysis, which 

initially accumulates in muscle tissue but can also leak into the circulatory system (Kieffer et al. 

1994; Wang et al. 1994). Plasma lactate followed a similar response profile over time as cortisol; 

however the significant reduction observed between 1 and 4 h values for plasma lactate was not 

present in the cortisol response (Fig. 2.6d). The mean concentration at 4 h was 12.75 ± 0.83 

mmol/L, which exceeded the maximum threshold of 10 mmol/L indicated by Farrell et al. (1998) 

for which sockeye salmon failed further repetitive swimming. Previous studies have also related 

delayed mortality with elevated plasma lactate levels (see Black 1958). 64% of fish had plasma 

lactate concentrations exceeding 10 mmol/L after 4 h and 14% had concentrations surpassing 20 

mmol/L. This suggests that sockeye salmon in this study were still experiencing a high level of 

circulating lactate that may have severely limited burst swimming even 4 h post-treatment (Jain 

and Farrell 2003). However, Farrell et al. (2001) also observed plasma lactate levels that were 

>20 mmol/L in wild coho salmon 1 and 2 h post-capture by commercial gillnet but reported low 

rates of mortality after 24 h. It can take up to 8 h for plasma lactate to return to pre-exercise 

values (Milligan 1996). Our results clearly show that >4 h is required for concentrations of 

cortisol (Fig. 2.6c) and plasma lactate (Fig. 2.6d) to decrease to basal values.  

We anticipated that muscle tissue would provide a more direct and sensitive measure of 

anaerobic exercise in fish (Pon et al. 2012), and hence perhaps indicate differences between 

gastric and external tagging insofar as external tagging required a longer handling time in the 
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trough and may have entailed higher levels of anaerobic exercise (Fig. 2.3). However, muscle 

lactate values were similar for control, external, and gastric tag attachments (Table 2.2). The 

response profile and range of muscle lactate concentrations were similar to that reported in other 

exercise physiology studies in both laboratory (Milligan 1996) and marine field settings (Farrell 

et al. 2001) but exceeded maximum muscle lactate concentrations following exhaustive exercise 

of adult rainbow trout and adult Atlantic salmon (30 - 41 and 25 - 45 mmol/kg, respectively: 

Kieffer 2000). We expected muscle glycogen to decrease following capture stress and then to 

slowly increase, however there was no effect of time on the response profile (Table 2.3). 

Milligan (1996) stated that following exhaustive exercise in rainbow trout, 80 - 85% of the total 

lactate produced is retained within the muscle and its clearance is coincident with glycogen 

replenishment. Milligan (1996) and Milligan and Wood (1986) illustrated the peak of 

replenishment for muscle glycogen in rainbow trout occurring 8 h post-exercise, with levels from 

0 - 4 h appearing to be similar and ranging from 0 - 5 mmol/kg. In this study, muscle glycogen 

remained similar over holding times and sampling periods and ranged from 9 - 13.5 mmol/kg 

and replenishment was not observed likely due to the shorter timeframe of the experiment. These 

values were consistent with what was reported in commercial troll captured coho salmon (Farrell 

et al. 2001). It is also known that continued elevation of plasma cortisol limits the restoration of 

muscle glycogen post-exercise (Pagnotta and Milligan 1991; Eros and Milligan 1996).  

Physiological influences due to sampling period were evident in the response profiles of 

plasma sodium, potassium, and glucose suggesting that the absolute values of recovery profiles 

from salmon will change with maturation states. The elevated potassium levels we measured in 

the late sampling period have been associated with exercise and also with periods of hypoxia, 

possibly indicative of cell damage or muscle depolarization (Sejersted & Sjogaard, 2000; Matey 



 30 

et al. 2008). Additionally, low concentrations of major plasma ions have been reported in mature 

sockeye salmon after facing a severe stressor (Hruska et al. 2010). Plasma glucose 

concentrations were significantly different over sampling periods with levels in the early period 

being greater than those in the late period (Fig. 2.7c). It is known that glucose levels increase 

alongside rising cortisol levels (Kubokawa et al. 1999), however our results indicate that despite 

high levels of cortisol occurring in the 1 and 4 h holding times, glucose in the late sampling 

period did not reach the relatively elevated levels observed in the early sampling period (Fig. 

2.7c). Moreover, plasma glucose values in this study were lower than those reported in adult 

sockeye salmon in freshwater after simulated capture-and-release treatments (Gale et al. 2011), 

prior to biosampling and surgical implantation (Clark et al. 2010), and following repeated swim 

challenges (Eliason et al. 2013). The reason for decreased levels of plasma glucose in the late 

sampling period may have been due to excessive use of this energy substrate during final 

maturation.  

The high occurrence of stomach perforation in the late sampling period is similar to 

reports of injury of the gastrointestinal tract for gastrically tagged fish in other studies looking at 

tagging effects on adult migrating salmonids (Gray and Haynes 1979; Corbett et al. 2012). In all 

cases, it was unknown if damage occurred immediately upon tag insertion or some time after 

tagging. A tagging effects study by Corbett et al. (2012) found that gastric tagging of adult 

Chinook salmon in the late stages of spawning migration caused 90% mortality when held for 50 

days in captivity, compared to 30% and 10% mortality of control and externally tagged fish, 

respectively. Furthermore, Corbett et al. (2012) reported that death of gastrically tagged fish only 

started to occur 16 days post-tagging (50% mortality after 22 days), suggesting that any 

immediate or acute trauma associated with the tagging event did not lead to immediate mortality. 
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Postmortem dissections revealed that the stomach tissue in all fish was degraded to various 

degrees and that individuals from all treatment groups exhibited accumulation of fluid in the 

peritoneal cavity and internal hemorrhaging (Corbett et al. 2012). Further, reports from field 

studies suggest that gastrically tagged sockeye salmon with ruptured stomachs appeared to be 

dying prematurely and were less successful spawners (i.e. higher levels of egg retention) 

compared to those that were found dead with an intact stomach (Schubert and Scarborough 

1996).  

Interestingly, we did not detect an immediate physiological disturbance caused by 

stomach perforation (Table 2.4). Results from Corbett et al. (2012) combined with our short-term 

equivocal physiological results among tagged, control, perforated, and non-perforated fish 

suggests that adverse physiological effects of gastric tagging may only become apparent days or 

weeks after the tagging event. This further supports our findings that acute physiology is not 

informative of long-term survival. Based on their survival study, Corbett et al. (2012) 

recommended that gastric tags should be implanted at dates and locations closest to freshwater 

entry, when fish are in a robust state (Hinch et al. 2006). They also offered the recommendation 

that if fish are only available at a later period in the spawning migration, external tags should be 

used. Disadvantages of externally attached transmitters should still be considered, such as the 

potential for biofouling around the tag site (Thorstad et al. 2001), increased susceptibility to 

entanglement in fishing gear or other elements of the environment (Rikardsen and Thorstad 

2006; Mellas and Haynes 1985), increased predation (Beguér-Pon et al. 2012), and tag loss 

(Corbett et al. 2012). Gray and Haynes (1979) also concluded that external tags might prove 

better for telemetry studies with salmon under starvation conditions due to higher susceptibility 

of stomach rupture during tagging. If logistics permit, checking the quality of the stomach prior 
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to tagging could help in assessing the risk of potential perforation or deciding to use an 

alternative attachment technique, such as external attachment. The creation of an index of the 

progression of gastrointestinal tissue atrophy and risk of perforation based on river-entry timing 

would be beneficial for researchers when considering transmitter attachment options. Further 

research is needed to determine the mechanism underlying low survival of gastrically tagged fish 

(Corbett et al. 2012) and to understand if and how stomach perforation adversely affects fish 

health over a longer period of time.  

Tagging fish of any taxa and life history stage requires minimization of handling time and 

burden on the fish carrying the tag; however, there will always be some degree of negative 

impact on the fish which may be indistinguishable from capture and handling stress when 

assessed immediately post-tagging. The initiation of anaerobic activity likely takes place both 

during capture and tagging without anesthesia and the subsequent fatigue can be serious and 

include depletion of energy reserves, physiological dysfunction, and even death (Wood et al. 

1983; Wang et al. 1994; Milligan 1996). However, the temporal profile of the physiological 

response may only reach levels indicative of such adverse tertiary effects >4 h post-tagging. 

Such long-term consequences may be especially important for migrating adult sockeye salmon, 

which are already dealing with a myriad of environmental and anthropogenic pressures as well as 

physiological changes in preparation for spawning. We do not know which of these fish would 

have survived or perished over the long-term. We also do not know the extent to which capture, 

holding in the seine net pre-tagging, confinement in the net pen post-tagging, and dip netting 

may have influenced the various response profiles. For example, holding in the net pens may 

have compromised their recovery, as it has been shown that short-term confinement may result 

in significant physiological disturbance (Portz et al. 2006; Donaldson et al. 2011). Regardless, all 
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field tagging studies cannot avoid most of these capture and handling stressors and this limits the 

ability of the experimenter to tease apart the additional acute stress associated with tagging itself. 

The dominance effect of capture and handling on the overall stress response needs to be 

recognized in future efforts investigating experimenter effects. 

Limitations in this study should be considered when interpreting the results. The 

difficulty in identifying effects may have been influenced by the high natural variation in a wild 

population and the sample sizes used. Furthermore, isolating the effects of transmitter attachment 

techniques from the impacts of capture and handling stress is challenging because each of these 

processes are inherently part of a realistic tagging event. Also, the physiological tools used may 

not have been the most appropriate to determine differences in short-term physiological 

responses. Another method to assess the physiological state of a fish and to predict delayed 

mortality that may have been helpful is reflex assessment such as RAMP (reflex action mortality 

predictors) (Raby et al. 2012). Lastly, our handling times with the fish in the tagging trough were 

realistic but were lower than in other tagging studies not using anesthesia (e.g., 2 min in Mathes 

et al. 2010; 3 min in Roscoe et al. 2011; 2.5 min in Corbett et al. 2012). Longer tagging times as 

well as the addition of biopsy during tagging may elicit more profound tagging effects although 

it has been shown that tag and biopsy procedures of 150 s or less do not cause significant 

deleterious effects on travel times and survival (Cooke et al. 2005). Similarly, our results 

showing no incremental effect on acute physiology are limited in application to gastric or 

external tagging procedures that take less than 100 sec. 

In summary, we know that capture by beach seine and handling are stressful, while the 

addition of a tagging stressor, regardless of external or gastric tagging methods, does not 

influence the trajectory or magnitude of the acute stress response. We have addressed the call to 
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measure levels of stress indicators and muscle metabolites to assess the effects of tag attachment 

methods (as expressed in Corbett et al. 2012); using this “realistic” study design under field 

conditions, we failed to identify differences in physiological response. However, the reasonably 

high level of gastric tag perforation could be problematic despite the fact that our short-term 

assessment of the physiological responses to perforation did not indicate physiological 

dysfunction. Until the long-term consequences of stomach perforation are better understood, we 

recommend that researchers use the gastric insertion method with caution if tagging migrating 

Pacific salmon that are sexually maturing and have been in the freshwater environment for an 

extended period of time. The equivocal acute physiological results for tagging effects and 

stomach perforation were not consistent with the long-term differences in survival reported in 

other studies. This potential disconnect between acute stress and long term survival highlights 

the need for comparative field studies to understand the long-term consequences of different 

tagging methods on fish behaviour and survival. 
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Table 2.1. Comparison of biological variables for untagged control (tag type = C), gastrically tagged (tag type = G), and externally tagged (tag type = 

X) female sockeye salmon held for 0, 1, or 4 h over the early and late sampling periods.  

 Early Late 

 0 h 1 h 4 h 0 h 1 h 4 h 

Variable  C C G X C G X C C G X C G X 

Plasma 

Na+ 

(mmol/L) 

Mean 136.99 141.58 147.84 145.22 130.41 130.70 130.26 140.00 151.56 148.13 148.94 134.51 131.03 135.73 

SE 1.36 4.41 2.24 2.42 1.7 2.1 1.72 1.58 1.91 3.42 2.04 3.00 2.79 2.51 

n 8 9 10 10 10 10 8 10 9 11 10 10 9 11 

Plasma K+ 

(mmol/L) 

Mean 1.53 2.29 2.17 1.88 3.09 5.71 4.74 3.74 2.49 2.75 3.10 4.47 4.89 4.91 

SE 0.42 0.6 0.5 0.45 0.49 1.38 0.67 0.31 0.37 0.39 0.34 0.60 0.58 0.28 

n 8 9 10 10 10 10 8 10 8 11 10 10 9 11 

Plasma 

cortisol 

(ng/mL) 

Mean 122.45 416.91 418.39 445.75 446.84 456.99 420.52 68.59 395.37 424.56 433.6 348.43 339.93 416.37 

SE 72.42 32.78 32.19 54.89 45.56 48.76 37.52 35.09 50.49 20.16 44.40 56.16 25.29 33.05 

n 8 9 10 10 10 10 8 10 7 11 10 10 10 10 

Plasma 

lactate 

(mmol/L) 

Mean 8.13 18.2 17.62 18.35 10.46 14.36 14.62 6.00 14.86 14.41 16.00 13.34 9.95 14.14 

SE 1.59 1.18 2.04 1.50 1.37 1.89 2.71 0.53 1.94 1.20 1.46 3.05 1.35 1.41 

n 8 9 10 10 10 9 8 10 8 11 10 10 10 11 

Plasma 

glucose 

(mmol/L) 

Mean 4.15 5.96 5.50 6.18 6.76 5.10 5.47 3.48 4.03 4.19 4.63 3.14 4.12 3.39 

SE 0.32 0.89 0.56 0.67 0.73 0.83 0.89 0.26 0.30 0.33 0.41 0.47 0.23 0.31 

n 8 9 10 10 10 10 8 10 9 11 10 10 10 11 

Muscle 

lactate 

(mmol/kg) 

Mean 54.63 43.34 43.25 46.66 36.72 33.54 28.18 52.01 43.98 42.95 44.12 30.11 28.24 30.75 

SE 5.02 5.06 4.23 2.82 3.10 4.64 4.07 3.12 4.24 1.73 1.03 2.64 2.39 2.35 

n 8 8 10 10 10 10 8 10 8 11 10 10 10 11 

Muscle 

glycogen 

(mmol/kg) 

Mean 11.08 10.86 12.20 10.86 12.77 12.00 14.01 13.25 8.38 8.65 10.08 12.17 11.79 9.17 

SE 2.98 1.26 2.22 1.13 1.47 1.20 1.92 2.35 1.57 1.11 1.41 1.40 1.37 1.08 

n 8 8 9 10 9 10 8 8 8 11 8 9 10 11 
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Table 2.2. Results of 3-way ANOVAs with tag type, time, month, and all interactions as effects, comparing females tagged with gastric or external 

tags or held as untagged controls for 1 h or 4 h in the early and late sampling periods.  

 
Tag type Time Sampling period Tag type ✕ time 

Tag type ✕ 

sampling period 
Time ✕ sampling period 

Tag type ✕ time ✕ 

sampling period 

Variable F df P F df P F df P F df P F df P F df P F df P 

Plasma concentrations                      

    Na+ (mmol/L) 0.06 2 0.940 95.42 1 <0.001 6.63 1 0.011 0.43 2 0.650 1.63 2 0.201 0.19 1 0.659 0.55 2 0.581 

    K+ (mmol/L) 1.38 2 0.256 42.13 1 <0.001 4.19 1 0.043 0.98 2 0.379 0.13 2 0.877 0.01 1 0.920 1.11 2 0.334 

    Cortisol (ng/mL) 0.44 2 0.647 0.53 1 0.467 2.93 1 0.089 0.04 2 0.966 0.47 2 0.626 1.77 1 0.186 0.66 2 0.521 

    Lactate (mmol/L) 1.08 2 0.345 12.83 1 <0.001 2.99 1 0.086 0.25 2 0.778 1.01 2 0.367 1.19 1 0.277 1.04 2 0.356 

    Glucose (mmol/L) 0.09 2 0.909 3.57 1 0.062 16.45 1 <0.001 0.20 2 0.819 2.41 2 0.095 0.70 1 0.404 1.83 2 0.165 

Muscle metabolites                      

    Lactate (mmol/kg) 0.23 2 0.794 45.71 1 <0.001 1.03 1 0.312 0.76 2 0.472 0.26 2 0.769 0.39 1 0.530 0.99 2 0.372 

    Glycogen (mmol/kg) 0.01 2 0.99 4.76 1 0.032 6.23 1 0.014 0.39 2 0.680 0.20 2 0.817 0.05 1 0.817 1.88 2 0.158 

Notes: Significant values (P ≤ 0.05) are in boldface type. 
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Table 2.3. Results of 2-way ANOVAs with time, sampling period, and interactions as effects, 

comparing physiological responses of females held for 0, 1, or 4 h in the early and late sampling 

periods. Gastric, external, and control fish were pooled for this analysis.  

 

Time Sampling period Time ✕ Sampling period 

Variable F df P F df P F df P 

Plasma concentrations          

    Na+ (mmol/L) 57.99 2 <0.001 5.89 1 0.017 0.029 2 0.971 

    K+ (mmol/L) 23.59 2 <0.001 19.09 1 <0.001 2.200 2 0.115 

    Cortisol (ng/mL) 19.97 2 <0.001 1.907 1 0.169 1.112 2 0.332 

    Lactate (mmol/L) 27.11 2 <0.001 3.231 1 0.075 0.681 2 0.508 

    Glucose (mmol/L) 4.376 2 0.015 19.75 1 <0.001 1.304 2 0.275 

Muscle metabolites          

    Lactate (mmol/kg) 41.247 2 <0.001 1.087 1 0.299 0.527 2 0.592 

    Glycogen (mmol/kg) 2.665 2 0.074 0.083 1 0.774 2.392 2 0.096 

Notes: Significant values (P ≤ 0.05) are in boldface type.  
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Table 2.4. Comparison of biological variables for females in the late sampling period with an 

intact or perforated stomach for the 1 h and 4 h holding times. The intact stomach group consists 

of untagged control and gastrically and externally tagged fish. The perforated stomach group 

consists only of gastrically tagged fish. T-test revealed that there were no significant differences 

in response variables between fish with an intact or perforated stomach over both holding times.   

 1 h 4 h 

 Intact  

(n = 23) 

Perforated  

(n = 6) 

Intact  

(n = 23) 

Perforated  

(n = 8) 

Variable Mean SEM Mean SEM Mean SEM Mean SEM 

Plasma Na+ (mmol/L) 150.83 1.22 143.68 5.57 134.75 1.85 131.61 3.1 

Plasma K+ (mmol/L) 2.75 0.22 2.98 0.63 4.71 0.3 4.88 0.66 

Plasma lactate (mmol/L) 15.52 0.97 13.42 1.62 13.54 1.46 9.62 1.64 

Plasma glucose (mmol/L) 4.18 0.23 4.76 0.41 3.35 0.25 4.08 0.29 

Cortisol (ng/ml) 414.31 25.89 443.15 27.04 375.15 30.04 349.25 31.08 

Muscle glycogen (mmol/kg) 9.25 0.91 8.1 1.25 11.18 0.94 10.31 1.21 

Muscle lactate (mmol/kg) 43.31 1.57 44.9 2.45 29.62 1.67 30.06 2.59 
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Figure 2.1. Map of the lower Fraser River and Harrison River in British Columbia, Canada. Pin 

indicates the study capture/tagging/holding site. 
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Figure 2.2. Tag attachment methods: (A) External tag affixed using metal pins inserted through 

the dorsal musculature and secured by twisting over ends of the pins; (B) Gastric tag inserted 

into the stomach through the mouth using a smooth plunger, antenna trails from mouth.  
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Figure 2.3. Time in trough per tag type (mean ± SEM). Asterisk indicates significant difference 

in duration of time in the trough by tag type. 
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Figure 2.4. Mean (± SEM) gonadosomatic index (GSI = gonad mass ÷ body mass) for females 

from the early and late sampling periods over the spawning season. Asterisk indicates significant 

difference between sampling periods. 
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Figure 2.5. Plasma lactate concentrations and time in trough in seconds. Fish tagged via gastric 

insertion are represented by white symbols and fish tagged via external tagging are represented 

by black symbols. Squares represent blood samples taken 1 h post-tagging and circles represent 

samples taken 4 h post-tagging. 
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Figure 2.6. Mean ± SEM of response variables assessed for the effect of holding time using 

Tukey’s HSD, a) plasma sodium, b) plasma potassium, c) cortisol, d) plasma lactate, e) plasma 

glucose, and f) muscle lactate. Different letters indicate a significant difference between groups.  
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Figure 2.7. Mean ± SEM of response variables assessed for the effect of sampling period using 

t-tests, a) plasma sodium, b) plasma potassium, and c) plasma glucose. Different letters indicate a 

significant difference between groups.  
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Figure 2.8. Degradation of stomach lining: (A) Intact stomach without a tag; (B) Positioning of 

the tag in an intact stomach; (C) Punctured stomach due to the insertion of a gastric tag.  



 47 

CHAPTER 3: The effects of gastric and external tagging on behaviour and fate of adult 

migrating sockeye salmon in the wild 

ABSTRACT 

Telemetry is a common tool for studying the behaviour and fate of migrating adult 

Pacific salmon with the assumption that the behaviour and survival of a tagged fish represents 

that of untagged conspecifics. Few studies focus on exploring this assumption, and those that do 

occur primarily in laboratory settings. In this study, adult Harrison River sockeye salmon in the 

Fraser River watershed of British Columbia were radio tagged by gastric insertion or external 

attachment in the dorsum. Similar numbers of the two tag types were deployed alternately, 

allowing for a paired comparison of behavioural patterns and survival. Tagging occurred over 

five days in September and October 2014 and encompassed fish in varying stages of maturity 

and freshwater residency, from early entrants to sexually mature individuals, to assess whether 

an interaction of tag type and sampling period affected the behavioural ecology of study fish. 

Tagged individuals were monitored over the spawning season using fixed receiver stations and 

mobile tracking. Regardless of tag type, study fish exhibited wide-ranging up- and downstream 

movement 35 h or less post-tagging, in which fish tagged in September tended to move more 

readily than those tagged in October. Tag type significantly influenced fate of Harrison sockeye 

salmon. Almost twice as many externally tagged fish (41.6% [42 of 101]) survived to reach 

spawning areas compared to gastrically tagged fish (22.4% [21 of 94]). Throughout the 

migration period, the number of active externally tagged fish in the Harrison River system was 

consistently greater than gastrically tagged fish released on the same date. More research is 

needed to elucidate the mechanism behind lower survival for gastrically tagged sockeye salmon. 

This is the first study to use adult sockeye salmon as a study species to evaluate and directly 
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compare the effects of gastric and external two tag attachment techniques in a field setting and is 

the first to describe intra-system movement of the Harrison River sockeye salmon population 

across the entire run timing period. 
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INTRODUCTION 

Telemetry is an important tool for studying wild fish in their natural environment (Cooke 

et al. 2013; Hussey et al. 2015). For species such as Pacific salmon that migrate vast distances 

from oceanic feeding grounds to natal freshwater streams to spawn (Groot and Margolis 1991), 

telemetry provides important insight into migratory behavior and survival (Drenner et al. 2012). 

Deciding what type of tag and attachment technique to use is dependent on a number of factors 

including morphology and life stage of the study species, the environment and habitat in which 

the study will take place, and duration of the study. Ultimately, selecting a tag type and 

attachment technique that is best suited to the individual is key to generating telemetry results 

that are unbiased and representative of the broader untagged population (Brown et al. 2011).  

Tagging studies of migrating adult Pacific salmon are considered short in duration (6-8 

weeks) given that the adults typically die after spawning (i.e., they are semelparous), compared 

to other studies that can track individual movement for many years. Tags are typically applied in 

the coastal approach, estuaries or in rivers/lakes partway along the spawning migration. It is 

necessary to expedite procedures so that animals can continue on their spawning journey with 

negligible delay. The main techniques for attaching electronic tags to fish are gastric insertion, 

external attachment, and intracoelomic surgical implantation (Cooke et al. 2012; Thorstad et al. 

2013). Gastric insertion is commonly used to tag migrating adult Pacific salmon as they typically 

have ceased feeding upon leaving the marine environment (albeit species and population 

dependent) and it is a quick, less invasive method that requires little training on the part of the 

tagger (Ramstad and Woody 2003; Thorstad et al. 2013). External tagging is less common for 

adult Pacific salmon, but is a good alternative to gastric tagging given that it can be done rapidly 

and has been widely used on Atlantic salmon (Thorstad et al. 2000; Jepsen et al. 2015). 
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Intracoelomic surgical implantation is regarded as an approach used for long-term deployments 

(e.g., months to years) and is considered less favorable for telemetry studies on adult Pacific 

salmon en-route to spawning grounds due to additional logistic requirements such as the need for 

anesthetic and the more involved laparotomy procedure (Wagner et al. 2011). 

Studies that assess tag effects are performed primarily under laboratory settings, with few 

occurring under field conditions (Cooke et al. 2011; Drenner et al. 2012; Wilson et al. 2016). 

There is an inherent challenge in conducting a tagging effects study in the wild due to the 

logistical impossibility of having an untouched “true” control group for comparison. One 

approach to getting around this challenge is the “staggered entry” approach in which the 

behaviour of newly released individuals is compared to previously-tagged conspecifics after a 

substantial time interval has elapsed (i.e. months or even one year) and assuming that negative 

behavioural alterations associated with tagging subside over time. This approach is appropriate 

for studying the effects of tag implantation on the behaviour of iteroparous fish that return to the 

same areas to spawn year after year (e.g., walleye; Wilson et al. 2016). However, the staggered 

entry approach is not applicable for migrating sockeye salmon, at least across multiple years, as 

they exhibit a semelparous reproductive strategy in which they perish after a single spawning 

event. Studies have compared different tag types (e.g. PIT vs. radio; Hockersmith et al. 2003), 

tag sizes (Matter and Sandford 2003), or tag attachment methods (Gray and Haynes 1979) on 

adult Pacific salmon in the field. To date, no studies have specifically used adult sockeye salmon 

as a study species to compare the long-term behavioural and survival consequences of gastric 

and external tags in the wild. Given the amount of effort focused on studying sockeye salmon in 

the northeast Pacific with telemetry, there is a need to identify optimal tagging methods to 

inform future research studies focused on adult behaviour and survival. 
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Abnormal behaviour of tagged adult Pacific salmon has been reported in previous 

telemetry studies, particularly immediately post-release. For example, tagged adult Chinook 

salmon demonstrated a tendency to pause or move downstream after release (gastric: Burger et 

al. 1985; Pahlke and Bernard 1996, gastric and external: Gray and Haynes 1979; external: 

Bernard et al. 1999). However, over time, abnormal behaviour appeared to cease in most cases. 

For example, despite initial fallback of their externally tagged group, Gray and Haynes (1979) 

found that rates of upstream movement of externally tagged and gastrically implanted adult 

Chinook salmon were similar. Other adverse behaviour reported in holding studies of other fish 

species affixed with tags include scouring by externally tagged Atlantic cod held in a large 

mesocosm (Broell et al. 2016) and substrate scraping by externally tagged rainbow trout (Mellas 

and Haynes 1985) and white sturgeon (Haynes et al. 1978), perhaps in an effort to dislodge the 

external tag. It is not uncommon for studies to disregard data from the first day or week post-

tagging under the assumption that behaviour was altered but with no way of testing for this effect 

(Wilson et al. 2016; Murray and Fuller 2000). However, behaviour over this timeframe, even if it 

is considered ‘abnormal’, may be important to consider as it may reveal important tagging 

effects and could even influence the endpoints of a study such as delay in migration.  

Differences in survival between gastrically and externally tagged Pacific salmon have 

also been reported. Corbett et al. (2012) observed low survival of gastrically tagged adult 

Chinook salmon compared to externally tagged and control fish. Adult hatchery Chinook salmon 

were collected during the spawning migration and transported to a holding tank and held for 12 h 

before being tagging under anesthetic (Corbett et al. 2012). In their 50 d holding study, 

gastrically tagged Chinook salmon began to die 16 d post-tagging, with 50% mortality occurring 

after ~27 days (Corbett et al. 2012). By the end of the study, 90% of gastrically tagged 
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individuals had perished while 70% of controls and 90% of fish with externally mounted tags 

had survived (Corbett et al. 2012). Corbett et al. (2012) posit that latent effects associated with 

stomach perforation of gastrically tagged Chinook salmon may have resulted in mortality but 

were unable to specifically determine why survival for this group was much lower than 

externally tagged and control conspecifics.  

The objective of this study was to compare the behaviour and fate of sockeye salmon 

affixed with either a gastric or external radio transmitter. To do this, adult sockeye salmon were 

tagged and tracked in a freshwater river system throughout the spawning period to quantify the 

short-term (~35 h post-release) and long-term behaviour and fate. Research focused on the adult 

migrating Harrison River sockeye salmon in the Fraser River watershed in British Columbia. 

This population has been the focus of a number of telemetry studies over the past 15 years that 

have employed different tagging techniques (English et al. 2005; Mathes et al. 2010; Donaldson 

et al. 2012; Robinson et al. 2015). Harrison River sockeye salmon are considered part of the late 

run timing group and exhibit a unique migratory pattern. With early entrants arriving as early as 

August, Harrison River sockeye salmon exhibit a prolonged freshwater residency until peak 

spawning in mid-November (Gilhousen 1990). Harrison Lake is often used as a thermal refuge 

by migrating adult sockeye salmon seeking cooler waters (Mathes et al. 2010) and the spawning 

area is located in the middle reach of the river (Fig. 3.1; Schaeffer 1951). The prolonged 

residency of Harrison sockeye salmon in the river environment prior to spawning means that the 

movement of tagged fish does not adhere to a linear trajectory as is commonly seen in tagged 

fish from other Fraser River sockeye populations migrating to an upstream spawning site. In 

recent years, there have been inconsistencies between the projected spawning estimates 

generated by data from the hydroacoustic site in Mission, BC, and the actual spawning 
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escapements. Of late, there is much interest in generating prespawn survival estimates relative to 

different river-entry timing for this population, which necessitates an understanding of the 

relative effects of different tagging methods on fish behaviour and survival.   



 54 

METHODS 

All protocols in this study were conducted in accordance with Canadian Council of 

Animal Care guidelines. Animal care protocols were approved by Carleton University and 

Fisheries and Oceans Canada. A scientific collection permit was also obtained from Fisheries 

and Oceans Canada. 

Study area and species 

The study area was located on the Harrison River, ~18 km in length, which flows 

southwest from Harrison Lake to join the Fraser River, about 100km upriver from Vancouver 

(Fig. 3.1). The Harrison River is the natal stream of the Harrison Rapids sockeye salmon 

population and is a migratory waterway for Birkenhead River, Big Silver Creek, and Weaver 

Creek sockeye salmon populations. Both First Nations and recreational fisheries occur within the 

Harrison River. Fishing was planned to coincide with the appearance of adult migrating Harrison 

Rapids sockeye salmon and to encompass early entrants arriving in mid-August and early 

September through to fish arriving near peak spawning time in mid-November. 

Transmitter attachment 

The basic components of the study were (1) tagging sockeye salmon with either a gastric 

or external radio telemetry transmitter to compare consequences relative to one another, (2) 

alternating tag attachment methods to ensure that both tag types were released into the system on 

each sampling day, and (3) planning for sampling days to occur across the run timing period to 

assess the consequences of migration timing on behaviour and survival. Sockeye salmon were 

captured in a narrow, fast-flowing section of the river traditionally used by the local Sts’ailes 

First Nations band and known as “the Park”, located approximately 9 km upstream of the 
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Harrison-Fraser confluence (Fig. 3.1). This location is about 5-10 km from areas in which 

Harrison sockeye salmon are known to spawn (Schaeffer et al. 1951). A beach seine deployed 

from a jet boat encircled an area that typically holds staging sockeye salmon. The net was pulled 

in by hand to collect the catch in a manageable area on the riverside. Fish were held in the 

bagged seine net for 2 - 73 min (average 31 min) prior to tagging. 

 Study fish were transferred into a foam-lined V-shaped trough equipped with a continual 

flow of fresh river-water over the mouth, gills, and body of the fish. A team of three people 

assisted with the tagging process: the first person held the fish in the trough, the second 

individual applied the transmitter and collected biological samples, and the third person recorded 

all relevant information. Either a gastric or external radio telemetry tag was affixed (procedure 

outlined in detail in Cooke et al. 2012) using established protocols for tagging adult salmon 

without anesthetic (Cooke et al. 2005). Anesthetic is rarely used for tagging of adult Pacific 

salmon in the wild given the potential to disrupt migration and the fact that tagged fish could be 

captured and eaten in food fisheries. The two radio tag models used in this study were the 

externally attached TX-PSC-E-45 and the gastrically applied TX-PSC-I-1200 (Fig. 3.6), both 

made by Sigma Eight Inc. The external tag measured 32 mm in length, 10 mm in width, 9.8 mm 

in height, and weighed 3.7 g. Two holes at the extremities of the tag facilitated attachment using 

flexible nickel pins (77 mm in length), which were simultaneously pierced through the dorsal 

musculature of the fish at the base of the dorsal fin. Clear plastic discs (14 mm in diameter) were 

slid onto the exposed ends of the pins and, using pliers, the tag was secured against the body by 

bending and knotting the pin flat against the discs. Once attached, the tag profile was smooth and 

the antenna (305 mm) trailed from the posterior end. In comparison, the gastric tag measured 43 

mm in length, 16 mm in width, 16 mm in height, and weighed 15.2 g. Gastric tags were inserted 
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through the mouth into the stomach of the supine fish using a smooth plunger to guide the 

transmitter down the esophagus (Ramstad and Woody 2003; Cooke et al. 2005). After insertion, 

the antenna (413 mm) trailed from the mouth of the fish. During the tagging procedure, fork 

length (cm), an estimate of sex based on secondary sexual characters, capture and release vigor, 

an estimate of maturity/freshwater residency time based on colour and scale quality, and duration 

in the tagging trough (mm:ss) was recorded. The adipose fin was clipped and a scale was 

collected for stock identification analysis (see Beacham et al. 2005). The tagging procedures 

took an average of 39 s (range = 22 - 76 s) for the gastric procedure, which was significantly 

faster (t = -9.6, df = 182.9 , P < 0.001) than the 64 s (range = 39 - 149 s) required for external 

tagging. 

Overall, 195 sockeye salmon (mean fork length = 61.5  ± 3.5 cm) were tagged and 

released in the study over 5 sampling days in 2014 (101 external tags, 94 gastric tags; on 11, 18, 

25 September and 18, 23 October; Table 3.1).  This approach of spreading tagging effort across 

the run timing period is consistent with previous studies given management interest in 

characterizing how time period influences success to spawning grounds. The electronic 

transmitters used in this study transmitted on the 150 MHz band and were set to one of eight 

radio frequencies: 600, 620, 640, 660, 680, 700, 720, and 740. Combining one of these 

frequencies with a unique transmission code allowed for each tag to be individually 

programmed. Transmitters were equipped with a motion sensor that was programmed to transmit 

at a different burst interval when a set movement threshold was attained to indicate a dead fish. 

When the number of movement events per second fell below 180 for a consecutive 24 h period, 

the coded transmission signal reversibly switched from the default 5 s burst rate to 7 s. At times, 

the burst rate from a tagged individual switched back and forth from the “live” 5 s to the “dead” 
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7 s interval burst rate. When this occurred, the fish was assumed to be alive up until the final 5 s 

burst interval, even if preceded by periods of 7 s burst intervals. Hence a fish was only deemed 

“dead” if its final detections were consistent 7 s burst intervals. Each tag was labeled with 

research contact information in case a radio tag was found or removed from a study fish (e.g. if a 

fish was harvested by a fisher). An ongoing tag-return reward program was in place to encourage 

the reporting of harvested individuals.  

Tracking systems 

Radio-tagged sockeye salmon were monitored using fixed stations and mobile tracking. 

Five fixed receiver stations were installed on the Harrison River to track the activity of tagged 

fish (Fig. 3.1). An additional four fixed receiver stations were located in the Fraser River and 

were maintained in collaboration with concurrent radio telemetry studies to provide tracking 

information of tagged individuals that left the Harrison River system (Fig. 3.1). Each station was 

equipped with either an Orion radio receiver manufactured by Sigma Eight Inc. or a SRX400A 

manufactured by Lotek Wireless Inc. One fixed receiver station was located across the river from 

the tagging site in the Harrison River (Fig. 3.1), allowing for tracking to commence immediately 

upon release of tagged individuals. Radio receivers were powered by two 12V deep cycle marine 

batteries in parallel and housed in a waterproof metal enclosure. Energy from solar panels 

supplemented the power source at some sites. Each fixed-receiver station was equipped with at 

least one Yagi antenna with 3, 4, or 5 elements. Mobile tracking supplemented the data collected 

by the fixed-receiver stations by providing higher resolution information and allowing for 

monitoring of sections of the river that were not included in the detection range of the fixed 

stations. The general location of each tag detected by mobile tracking was determined using a 

mobile receiver and Yagi antenna. When coupled with GPS coordinates, we were able to 
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generate visual assessments of the distribution patterns over time. Mobile tracking occurred 

within ~35 h after a tagging event to determine short-term behaviour and survival post-release 

and was repeated on a weekly basis until the end of the peak spawning period. Data from fixed 

receivers were downloaded at regular intervals and stations were monitored for battery power 

levels and receiver performance.  

Data analysis 

The raw data from the fixed-receiver sites were combined and archived. Analyses of the 

tagging data were conducted using custom functions created in RStudio (Version 0.99.467) with 

user-defined criteria. Filtering of the raw data was necessary to remove false detections caused 

by electronic noise. Criteria for valid records for detections from fixed receivers were set at 

power levels ranging from -155 to 0 for data collected by the Orion receiver and greater than 30 

for the Lotek receiver, and a minimum of three detections within a time interval. Detections from 

mobile receivers were relatively much fewer and did not undergo such rigorous filtering as the 

fixed receiver detections. Once false positives were removed, a database of sequential detections 

for each fish was generated with both fixed and mobile detections. Each record included the fish 

identification code, fixed-receiver station, river kilometer in which it was detected, and detection 

power. The filtered database was used to generate spatiotemporal figures describing residence 

times at each station, detections between fixed sites from mobile tracking, and sites of last 

detection. Raw detections were analyzed to calculate the frequency of 5 s and 7 s burst rate 

intervals in each fish’s tracking history, and to determine the burst rate interval of the final 

detections. Detections collected by mobile tracking were assigned positional data by matching 

corresponding GPS information.  
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Survival estimation 

Using the fixed-station and mobile tracking data, each radio-tagged fish was classified 

into one of two categories: (1) successful, and (2) unsuccessful. Successful fish were those that 

were detected in the spawning area (see Fig. 3.1) on or after 7 November 2014 (Fig. 3.2). This 

date was before peak spawning (10 – 20 November 2014, DFO, personal communication) and 

coincided with a mobile tracking event by boat that spanned the length of the Harrison River. 

The rest of the fish were deemed unsuccessful. Due to the configuration and large area covered 

by the spawning grounds, it was not possible to recover carcasses of tagged fish post-spawning, 

therefore it was not confirmed if a “successful” fish was actually able to spawn or not. 

Categorization of survival or success, in this case, was therefore assessed as whether the tagged 

fish was in the area of the river at a time that would have most likely allowed for successful 

spawning. Unsuccessful fish were further classified into one of four categories: (1) premature 

mortality, (2) left the system, (3) fisheries removal, and (4) unknown. Premature mortalities were 

those that were detected as being in the Harrison River and emitting 7 s burst frequencies 

consistently before 7 November (for example, see Fig. 3.3). Fish categorized as having left the 

system were last detected at either the Harrison/Fraser confluence (rkms 0 or 1, see Fig. 3.1) or 

the upper end of the Harrison River towards Harrison Lake (rkm 14, see Fig. 3.1), emitting 5 s 

burst frequencies, and not subsequently detected in the Harrison River system (for example, see 

Fig. 3.4). Fisheries removals were tagged individuals reported to us as having been captured by 

fishers. Unknown fish were those in the Harrison River emitting 5 s burst frequencies but final 

detections occurring prior to 7 November, or residing elsewhere than the spawning area for the 

remainder of their detections (for example, see Fig. 3.5). The reasoning behind including the 

“unknown” category was to avoid overestimating premature mortalities. Longevity was 

calculated as the proportion of the number of days between an individual’s first and last 
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detections and the number of days over the period of time during which it may have been 

detected.  

Statistical analysis 

Significance levels were set at 0.05. Statistical analyses were conducted using JMP, 

version 12.0. Pearson’s chi-squared analysis was used to test for differences in fate between tag 

types, sex, and tagging date. Fisher’s exact tests were used to assess differences in fate between 

external and gastric tag types. 3-way ANOVA was used to assess the effects of tag type, sex, and 

capture date on proportional longevity. Where statistical differences were detected, t-tests were 

performed to determine the nature of those differences. When assumptions of normality and 

homogenous variance were not met, the variables were transformed or non-parametric ranking 

tests (for the ANOVA and t-test analyses) were used. 
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RESULTS 

All but two sockeye salmon were confirmed to belong to the Harrison Rapids population. 

The tracking history of the two study fish with “unknown” population origin showed similar 

movement patterns to those of Harrison sockeye salmon. These fish were both assessed as 

“successful” with the assumption that they were from the Harrison population. Additionally, one 

gastrically tagged fish from September 11 was released prior to recording an estimate of sex, and 

is therefore referred to as “unrecorded” for sex estimation (Table 3.1).  

Six tagged individuals were reported captured by fishers (5 externally tagged, 1 

gastrically tagged; Table 3.2). Three tagged fish were not detected upon release or subsequently 

by fixed stations or manual tracking, two of which were later captured by fishers. The third tag 

was considered to be a tag malfunction and was removed from the dataset.  

All Harrison River fixed receiver sites were actively scanning for detections 85 - 100% of 

the time except for site HR8 that experienced some technical difficulties and was operating for 

71% of its operation period (Fig. 3.1). The four fixed receiver sites in the Fraser River performed 

95 - 100% during their respective operation periods (Fig. 3.1). Results from a brief pilot study 

indicated that the average detection probability of both external and gastric tags were similar, in 

which gastric tags had slightly higher detection rates than external tags when in the air 90 – 180 

m from the fixed receiver antenna (K. Dionne, Simon Fraser University, personal 

communication). Detection probability varied at depth when tested at different fixed receiver 

sites, with most detection probabilities estimated at 74% or higher at depths of 1 - 8 m, with 

some lower detection probabilities occurring such as 19% for gastric tags at 8 m depth at HR1 

and 29% for external tags at 5 m depth at HR8 (see Fig. 3.1, K. Dionne, Simon Fraser 

University, personal communication). Detection efficiency of fixed receivers was estimated by 
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comparing the number of times a subset of fish (those that exhibited intra-system movement) 

passed a fixed receiver and the number of times it was detected by that receiver. Detection 

efficiencies were approximately 89% for HR1, 77% for HR4, 83% for HR6, 92% for HR8 and 

100% for HR10 (see Fig. 3.1). The detection efficiency of HR10 may be overestimated due to 

the small number of study fish that appear to have moved to the upper reaches of the river.  

Short-term behaviour 

On the tagging days in September, the majority of tagged individuals moved away from 

the release site within 35 h post-tagging (77.8% [42 of 54] on 11 September, 41.1% [23 of 56] on 

September 18, and 93.3% [42 of 45] on 25 September). Movement up- or downstream of the 

release site within 35 h post-tagging progressively declined on the tagging days in October 

(15.0% [3 of 20] on 16 October, and 5.0% [1 of 20] on 23 October). The likelihood of post-

release movement was significantly influenced by capture date (χ2  = 81.263, df = 4, P < 

0.001). Tag type did not have an effect on the likelihood of immediate movement away from the 

release site (χ2  = 0.033, df = 2, P  = 0.856) or on the likelihood of up- or downstream 

movement within 35 h post-tagging (χ2  = 0.385, df = 1, P  = 0.535). Movement post-release 

primarily occurred downstream from the release site (63.1% [70 of 111]) and the magnitude of 

movement was primarily to the bottom reaches of the Harrison River (see Fig. 3.8). Some 

individuals did move upstream (36.9% [41 of 111]) and the limit of detection was limited to 4 

rkm upstream of the release site (see Fig. 3.8). Upstream movement was most prevalent on the 

tagging day of 25 September, in which 82.2% [37 of 45] of tagged fish moved upstream 

immediately post-tagging.   

Of the fish that moved up- or downstream of the release site within 35 h post-tagging, 21 

did not return towards the release site and were classified as “unsuccessful: left the system”. This 
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group consisted of 10 externally and 11 gastrically tagged fish. Two fish (1 gastrically and 1 

externally tagged) were last detected passing receiver station FR150 near Hope and 19 fish (11 

gastrically and 8 externally tagged) were last detected passing receiver stations FR69 and FR70 

near Mission (Fig. 3.1). Time between release and last detection before moving away from the 

release site was not significantly different between fish that left the system (range = 26 min to 31 

h, median = 4.9 h, mean = 7.2 h) and those that eventually returned towards the release site 

(range = 4 min to 30 h, median = 3.3 h, mean = 6.7 h) (t = 0.47, df = 37.97, P  = 0.642). The 

amount of time that individuals spent up- or downstream after this initial movement and before 

returning toward the release site ranged from 14 min to 53 days (median = 2.1 days, mean = 10.6 

days). Fish that left the system entirely and returned did so primarily at the Harrison/Fraser 

confluence (29 of 31) and only 2 exited temporarily via the upstream reaches towards Harrison 

Lake (2 of 31). Tagged sockeye salmon that were classified as “unsuccessful: premature 

mortality” (n = 10) consisted of equal numbers of gastrically and externally tagged fish and 

included 7 females and 3 males. The proportion of days detected for this group ranged from 1.1 

to 74.2 days and areas of highest frequency of mortalities were in rkms 1 (n = 2) and 4 (n = 3). 

60% of study fish with fate “premature mortality” were tagged on 18 September. 

Moving away from the release site increased the likelihood of survival to reach terminal 

spawning areas for fish tagged in September (Table 3.5). Additionally, of the fish that moved 

away from the release site, externally tagged fish had higher survival to the spawning area. The 

opposite was observed for the October tagging days in which fewer fish moved away in general, 

and those that did had lower survival to the spawning area (Table 3.5). Fish that did not move 

away from the release site in October had higher survival to spawning, with externally fish again 
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having higher survival to the spawning area. Statistically, fate was marginally non-significantly 

related to the occurrence of immediate movement post-tagging (χ2  = 3.244, df = 1, P  = 0.071).  

Survival 

In total, 63 of the 195 sockeye salmon that were tagged and released were successful in 

reaching their spawning area by 7 November (Table 3.2). Almost twice as many externally 

tagged fish (41.6% [42 of 101]) survived to reach spawning areas compared to gastrically tagged 

fish (22.4% [21 of 94]) (Table 3.2). All but one externally tagged individual was detected as 

being active 35 h post-tagging (Table 3.3). Detections for five gastrically tagged fish terminated 

29 hours or less post-tagging, so were deemed “unsuccessful”. A sharp decline in number of 

active fish occurred 15 d post-release, approximately halving the number of active fish from all 

tagging dates and for each tag type (Table 3.3; Fig. 3.7). The number of active externally tagged 

fish was consistently greater than gastrically tagged fish for all time points and tagging dates 

(Table 3.3; Fig. 3.7). The activity curve for 25 September exhibits the least difference in activity 

between tag types over time (Fig. 3.7c). The slopes of the activity curves for 16 and 23 October 

(Figs. 3.7d and 3.7e, respectively) are steeper than those from previous tagging days and reach or 

are close to 0% 40 and 50 d post-release due to temporal proximity to the peak spawning period 

and associated rapid senescence and death. Three-way ANOVA revealed that the only significant 

factor that influenced proportional longevity was tag type (Table 3.4). A t-test revealed that 

proportional longevity was significantly lower for gastrically tagged fish (P  = 0.005).  

Tag type significantly influenced fate of Harrison sockeye salmon (χ2  = 8.244, df = 1, 

P  = 0.004). The likelihood of gastrically tagged fish being “unsuccessful” was significantly 

greater than that of externally tagged fish (Fisher’s exact test, P  = 0.003). Sex and tagging date 
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did not have an effect on fate (χ2  = 2.292, df = 2, P  = 0.318 and χ2 = 4.747, df = 4, P  = 

0.314, respectively).  
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DISCUSSION 

Deploying equal numbers of gastrically inserted and externally attached radio 

transmitters on wild adult Harrison sockeye salmon allowed for a comparison of post-tagging 

behaviour and survival of two tag attachment techniques commonly used in telemetry studies of 

Pacific salmon. This study revealed that the majority of tagged fish exhibited wide-ranging up- 

and downstream movement 35 h or less post-tagging, which was significantly influenced by 

capture date (i.e., fish tagged earlier tended to move more) but not by tag type. This study 

demonstrated that tag type significantly influenced survival to spawning areas, in which 

externally tagged sockeye salmon were nearly twice as likely to reach spawning areas as 

gastrically tagged fish. To our knowledge, this is the first study to use adult sockeye salmon as a 

study species to evaluate and directly compare the effects of these two tag attachment techniques 

in a field setting. Additionally, this study is the first to describe intra-system movement of the 

Harrison sockeye salmon population across the entire run timing period.  

Assessing immediate behaviour post-tagging may reveal latent effects of the tagging 

event. Research on the physiological consequences of capture and/or tagging in the wild has 

reported high levels of circulating lactate and cortisol in the hours following the stressor (see 

Chapter 2; Raby et al. 2015; Farrell et al. 2001), which may result in decreased swimming 

performance (Driedzic and Kiceniuk 1976; Milligan 1996; Farrell et al. 1998). We therefore 

hypothesized that fish may pause for a period of time to recover after being tagged and either 

remain near the release site or move slowly downstream. However, the movements that occurred 

within 35 hours post-tagging varied in magnitude and suggested that some individuals left the 

release site in as little as 4 min after tagging and covered vast expanses of the Harrison River 

shortly thereafter. This pattern may indicate that some fish were not exhausted physiologically, 
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or that they were seeking out desirable (low to moderate) flows, or intentionally exercising in an 

attempt to facilitate metabolic recovery (Milligan et al. 2000). Greater numbers of study fish 

tagged in September exhibited immediate movement away from the release site than in October. 

Tagged individuals in September may have had sufficient energy stores to be able to seek 

environmental conditions to facilitate recovery. Overall, the decrease in the likelihood of 

movement from the release area from September to October may simply be a reflection of 

temporal proximity to spawning and thus fish stayed closer to the spawning grounds (Hruska et 

al. 2010; Mathes et al. 2010).   

Movement within 35 h post-tagging occurred mainly downstream from the release site. 

Conversely, a pattern of immediate upstream movement post-tagging for gastrically tagged 

Harrison sockeye salmon was observed by Robinson et al. (2015) with tagging occurring in the 

same location as this study and over similar dates in September. Mathes et al. (2010) also 

reported upstream movement towards Harrison Lake, but primarily for fish tagged in late August 

and early September. We expected more study fish from earlier in our study to move upstream 

perhaps to seek thermal refuge in the cool waters of Harrison Lake (Mathes et al. 2010). 

However, the peak of upstream movement occurred for fish tagged on 25 September and there 

was little indication of prolonged residence in Harrison Lake. The two individuals that left the 

system temporarily via the upper reaches of the river appeared to have been gone for 2 and 6 

days, respectively. The river temperatures were cooling slightly throughout the month of 

September, therefore decreasing the need to use Harrison Lake as cool water refugia and 

increasing residency in Harrison River. The prevailing direction of movement that occurred 

immediately post-tagging was downstream, which may be a function of passive fallback (Frank 

et al. 2009). Fallback post-tagging has been reported in other telemetry studies using Pacific 
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salmon. In their telemetry study in the Lower Snake River in Washington, Gray and Haynes 

(1979) reported consistent downstream movement of adult Chinook salmon post-tagging which 

was unique to their gastrically tagged treatment. In our study, downstream movement was not 

influenced by tag type but was influenced by capture date. Gray and Haynes (1979) implanted 

gastric tags to fish in both the spring and the fall and observed similar tag-specific movement 

patterns over both seasons, suggesting that capture period did not influence rates of fallback in 

their study. An important caveat is that the tagged Chinook salmon in Gray and Haynes’ (1979) 

study were following a linear migration trajectory upstream whereas the Harrison sockeye 

salmon tagged in this experiment were already in vicinity of the spawning area and were likely 

exhibiting staging or milling behaviour. Therefore, downstream movement may be interpreted as 

migration delay in other telemetry studies of migrating adult Pacific salmon, but in our case it 

may simply be a reflection of in-river behaviour in the weeks prior to spawning.  

The differences in numbers of gastrically and externally tagged fish that moved away 

from the release site within 35 h post-tagging and associated survival to spawning area suggests 

that immediate movement may be a beneficial migratory strategy for long-term survival (Table 

3.5). Although the likelihood of immediate movement post-tagging did not statistically influence 

fate, there were consistent trends suggesting that, for tagging dates with frequent post-tagging 

movement, (1) externally tagged sockeye salmon moved away from the release site more readily 

than gastrically tagged individuals, and (2) fish that moved away were more successful in 

reaching spawning grounds (Table 3.5). We are not aware of any telemetry studies that have 

investigated correlations between immediate movement post-tagging and long-term survival.  

Tagged individuals had an overall survival rate of 32.3%. This value is similar to studies 

evaluating survival after interactions with recreational fisheries (i.e. ~36%; Donaldson et al. 
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2011) and is within the range observed for sockeye salmon released from tangle nets in the 

Fraser River (18% to 42%; Donaldson et al. 2010). However, what is remarkable is the 

difference in survival between the two tag types. The mechanism behind this observation is 

unclear however it is presumably linked to physical placement of the tag in the stomach. Gastric 

insertion can lead to perforated stomachs (Chapter 2; Ramstad and Woody 2003; Corbett et al. 

2012), particularly in fish that are well along in their migration and maturation. A holding study 

(see Chapter 2) revealed higher susceptibility of stomach perforation for gastrically tagged fish 

in the later sampling period (i.e. October). However, the short observation times did not identify 

physiological disturbances in gastrically tagged sockeye salmon with ruptured intestinal tract 

compared to those with an intact stomach. Presence of the antenna in the esophagus may also 

cause some leakage of water into the stomach that would otherwise not occur in externally 

tagged individuals. It is possible that the stomach has an important water balance and 

osmoregulatory role that we are not aware of and it cannot function when the tag is present. We 

speculated, alongside others (i.e. Corbett et al. 2012; Gray and Haynes 1979), that leakage or 

damage to the stomach could develop physiological imbalances and adverse whole-animal 

changes in performance over time. A higher frequency of gastrically tagged individuals was 

consistently assigned an “unsuccessful” fate category than externally tagged fish, except for 

those that were removed due to fisheries (Table 3.2). Activity curves suggest that fish tagged 

with either attachment method succumb to adverse effects >35 h but before 15 d post-tagging 

(Fig. 3.7), however the slope of decline for gastrically tagged fish is consistently steeper over this 

time period compared to that of externally tagged fish. The decline of activity for gastrically 

tagged individuals between 35 h and 15 d post-tagging is similar for all tagging dates, suggesting 

that even fish in a robust state tagged earlier in the sampling period via gastric insertion 
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experienced lower success, despite the lower likelihood of stomach perforation at this time. This 

suggests that gastrically tagged sockeye may be experiencing latent effects from the tagging 

event or are experiencing negative consequences associated with tag burden.  

Areas of the river with highest frequency of final detections for fish with “unknown” fate 

were rkms 10 and 11 at receiver sites HR6 and HR8 (36.4% [20 of 55] and 21.8% [12 of 55], 

respectively; Fig. 3.1). These receiver sites, particularly HR6, were the most detection-intensive 

as they are located in proximity to the spawning areas where Harrison sockeye salmon stage for 

long periods of time. The area across from HR6 is where the capture, tagging, and releases took 

place for this study (Fig. 3.1) and is also a common boat launch site. It is possible that some of 

the “unknown” fish may actually be unreported fisheries removals with final detections 

occurring as they were harvested and removed from the system. Both tag types would be equally 

visible to any fishers given the presence of the long antenna such that there would be no a priori 

reason to expect difference in reporting rate. The external tags may be more likely to be ripped 

out in a gill net or seine net which would lead to more “unknown” fates or erroneous 

categorization as premature mortality but neither of those patterns were observed. The number of 

fish reported as fisheries harvest were primarily externally tagged individuals (5 of 6), which 

may speak to the risk of increased susceptibility of external tags to entanglement in fishing gear 

(Rikardsen and Thorstad 2006).  

Understanding the technological limitations of each tag type is important to accurately 

interpret the results, such as differences in detection probabilities and performance under 

variable hydrological conditions. Determining the limitations of the mortality sensor would also 

aid in interpreting the data and potentially allow for finer resolution in confirming mortalities. 

One difference between the two tagging methods was the actual size of transmitter used. The 
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gastric transmitters were over 4 times heavier with 11 times larger volume than the external tags.  

The tag size selected for gastric placement was intentionally selected to be larger in an effort to 

reduce tag expulsion – the same tag size used for tagging thousands of sockeye in the Fraser 

watershed (English et al. 2005; Cooke et al. 2006). We selected a smaller external tag to reduce 

drag. We recognize that the difference in size/mass of the tag confounds the experiment but we 

also note that even the larger tag represents an incredibly small tag to body mass ratio (<1% 

calculated using mean body mass of study fish from Chapter 1). As such, we submit that it is 

unlikely that the difference in survival observed was a direct effect of the larger tag size. 

Alternate methods of assessing behavioural influences due to tag type include direct observation 

post-tagging or using accelerometers to measure aberrant swimming behaviours (as was done in 

Broell et al. 2016), however both these techniques may be more conducive to laboratory settings. 

Clearly there is more work needed on the long-term physiological consequences of stomach 

perforation and gastric tag placement on maturing sockeye salmon.  
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Table 3.1. The date and number of males and females tagged with either an external or gastric 

tag over the entire run time period. Fishing efforts occurred prior to 11 September but the 

quantify of fish captured was insufficient to allow deployment of both tag types in adequate 

numbers. The single individual with “unrecorded” sex on 11 September was released prior to sex 

estimation.  

Date External Gastric Total 

 

11 September 

   

     Female 14 11 25 

     Male 13 15 28 

     Unrecorded  1 1 

             54 

18 September    

     Female 13 13 26 

     Male 17 13 30 

   56 

25 September    

     Female 11 10 21 

     Male 13 11 24 

   45 

16 October    

     Female 5 5 10 

     Male 5 5 10 

   20 

23 October    

     Female 5 5 10 

     Male 5 5 10 

   20 

    

Grand Total 

 

101 94 195 
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Table 3.2. Fate of study fish by tagging date. Successful fish were those that were detected in the 

spawning area on or after 7 November. Premature mortalities were those that were detected as 

being in the Harrison River and emitting 7 s burst frequencies consistently before 7 November. 

Fish categorized as having left the system were last detected at either extremities of the Harrison 

River, emitting 5 s burst frequencies, and not subsequently detected in the Harrison River 

system. Fisheries removals were tagged individuals reported to us as having been captured by 

fishers. Unknown fish were those in the Harrison River emitting 5 s burst frequencies but final 

detections occurring prior to 7 November, or residing elsewhere than the spawning area for the 

remainder of their detections. 

   Unsuccessful 

 

n Successful 

Premature 

mortality 

Left the 

system 

Fisheries 

removal Unknown 

       

External       

     September 11 27 12 1 6 2 6 

     September 18 30 9 4 9 1 7 

     September 25 24 10 0 9 1 5 

     October 16 10 5 0 2 0 3 

     October 23 10 6 0 2 1 1 

          Total (%[n]) 101 41.6 [42] 4.9[5] 26.7 [27] 4.9 [5] 21.8 [22] 

       

Gastric       

     September 11 27 5 1 8 1 12 

     September 18 26 4 2 10 0 10 

     September 25 21 9 0 10 0 2 

     October 16 10 1 1 3 0 5 

     October 23 10 2 1 3 0 4 

          Total (%[n]) 94 22.4 [21] 5.3 [5] 36.2 [34] 1.1 [1] 35.1 [33] 

       

Grand Total (%[n]) 195 32.3 [63] 5.1 [10] 31.3 [61] 3.1 [6] 28.2 [55] 
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Table 3.3. Number of fish that were active 35 h, 15 d, 22 d, 30 d, 40 d, 50 d post-release. A 

tagged individual was considered active at a certain time point if its detections suggested 

movement in the Harrison River system or it was outside the system but returned at a later date. 

Data is visualized in Figure 3.7.  

Tagging date,  

treatment group n 35 h 15 d 22 d 30 d 40 d  50 d 

        

September 11        

     External 27 26 18 17 17 16 15 

     Gastric 27 27 10 10 10 8 7 

          Total 54 53 28 27 27 24 22 

        

September 18        

     External 30 30 18 15 14 14 13 

     Gastric 26 21 11 8 7 4 4 

          Total 56 51 29 23 21 18 17 

        

September 25        

     External 24 24 17 15 14 12 10 

     Gastric 21 21 13 11 11 11 9 

          Total 45 45 30 26 25 23 19 

        

October 16        

     External 10 10 5 5 3 3 0 

     Gastric 10 10 4 1 1 0 0 

          Total 20 20 9 6 4 3 0 

        

October 23        

     External 10 10 7 5 4 1 1 

     Gastric 10 10 3 3 1 0 0 

          Total 20 20 10 8 5 1 1 

        

Grand Total  195 96.9 [189] 54.4 [106] 46.2 [90] 42.1 [82] 35.4 [69] 30.3 [59] 

         (%[n])        
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Table 3.4. Results of 3-way ANOVA with response variable proportional longevity and tag type, sex, capture date, and interactions as 

effects. Proportional longevity was calculated as the proportion of the number of days between an individual’s first and last detections 

and the number of days over the period of time during which it may have been detected.  

 
Tag type Sex Capture date 

Tag type ✕ 
Sex 

Tag type ✕ 
Capture date 

Sex ✕ Capture 

date 

Tag type ✕ sex 

✕ capture date 

Variable F df P F df P F df P F df P F df P F df P F df P 

Proportional 

longevity 
8.27 1 0.004 0.85 1 0.357 1.69 4 0.155 0.03 1 0.86 0.70 4 0.59 1.06 4 0.377 1.10 4 0.357 

Note: Significant values (P ≤ 0.05) are in boldface type. 
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Table 3.5. The number of study fish that moved away from the release site within 35 h post-

tagging and associated survival to reach spawning areas.   

Tagging date, treatment 

group n 

Survived to 

spawning area 

(% [n]) 

September 11   

     External   

        Moved away 17 64.7 [11] 

        Did not move away 10 10.0 [1] 

     Gastric   

        Moved away 15 26.7 [4] 

        Did not move away 12 8.3 [1] 

September 18   

     External   

        Moved away 11 45.5 [5] 

        Did not move away 19 21.1 [4] 

     Gastric   

        Moved away  8 25.0 [2] 

        Did not move away 18 11.1 [2] 

September 25   

     External   

        Moved away 23 43.5 [10] 

        Did not move away 1 0.0 [0] 

     Gastric   

        Moved away  17 52.9 [9] 

        Did not move away 4 0.0 [0] 

October 16   

     External   

        Moved away 2 20.0 [1] 

        Did not move away 8 50.0 [4] 

     Gastric   

        Moved away 1 0.0 [0] 

        Did not move away 9 11.1 [1] 

October 23   

     External   

        Moved away 0 0.0 [0] 

        Did not move away 10 60.0 [6] 

     Gastric   

        Moved away 0 0.0 [0] 

        Did not move away 10 20.0 [2] 
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Figure 3.1. Map of the lower Fraser River, British Columbia, Canada. with inlay map of the 

Harrison River. The triangles represent locations of fixed receiver stations. Fixed receiver 

stations labeled by FR are located along the Fraser River and HR that they are located along the 

Harrison River. River kilometer segments are delineated by numbered lines (0 – 14) 

perpendicular to the river thalweg and are 1 km apart. The upstream and downstream boundaries 

of the spawning area (rkms 10 and 6, respectively) are delineated by white lines bordered in 

black. The star indicates the study capture/tagging/release site. 
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Figure 3.2. Spatiotemporal representation of detections from a tagged individual that was 

deemed “successful”. The individual was in the spawning area (between Location rkms 6 and 

10) on or after 7 November. 
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Figure 3.3. Spatiotemporal representation of detections from a tagged individual that was 

deemed “unsuccessful: premature mortality”. The mortality sensor is triggered by 29 October in 

rkm 11 and subsequent detections were consistently transmitted at the 7 s burst rate, indicating a 

dead fish. 
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Figure 3.4. Spatiotemporal representation of detections from a tagged individual that was 

deemed “unsuccessful: left the system”. The detection pattern showed that the fish remained near 

the release site for approximately a week post-tagging, then fell downstream and exited the 

system at the Harrison-Fraser confluence. The individual was detected passing by the receiver 

station further downstream in the Fraser River in Mission, BC (Location FR69/70). 
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Figure 3.5. Spatiotemporal representation of detections from a tagged individual that was 

deemed “unsuccessful: unknown”. The detection pattern showed that the fish remained near the 

release site for approximately 20 days post-tagging then fell downstream and did not return 

towards the spawning grounds. The burst rate of the final detections could not be reliably 

determined due to low number of detections. 
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Figure 3.6. Tag attachment methods. (A) The gastric insertion method uses a smooth plunger to 

guide the tag through the esophagus and into the stomach; (B) The external mounting method 

uses two pins to pierce the musculature below the dorsal fin. Pliers are used to secure the tag by 

twisting over the ends of the pins flat against the buffer discs.  
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Figure 3.7. Percentage of active study fish over time. Triangles represent externally tagged fish 

and squares represent gastrically tagged fish. A study fish was considered active if its detections 

suggested movement in the Harrison River system or it was outside the system but returned at a 

later date.
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Figure 3.8. Number of individual fish moving up- or downstream within 35 h post-release. The 

release site is represented by rkm 0. Black bars show number of individual fish that moved up- or 

downstream to that section of the river within 35 h post-tagging. White bars show proportion of 

those fish that eventually returned towards the release site.
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CHAPTER 4: General Discussion  

This thesis aimed to explore a key assumption underpinning all telemetry studies; that the 

attachment and burden of the transmitter does not influence the behaviour and/or survival of 

tagged individuals. Adult sockeye salmon from the Harrison Rapids population in the Fraser 

River watershed of British Columbia were tagged with two models of radio transmitters that 

required either external mounting or gastric insertion. Study fish were in the midst of their 

spawning migration, and tagging occurred throughout the entire run timing period to assess 

whether sampling period, i.e. maturation state, influenced outcomes. In Chapter 2, tagged and 

control individuals were held in riverside net pens and short-term physiological responses to 

tagging were measured and compared. In Chapter 3, the movement and survival of externally 

and gastrically tagged adult sockeye salmon were monitored throughout their migration window 

and spawning periods to determine relative differences between the two tag types. I discuss how 

these findings advance our understanding of tag-related effects on migrating adult Pacific 

salmon, and inform future research activities. This study is the first to directly compare the 

consequences of gastric and external tags on the physiology, behaviour, and survival of 

migrating adult sockeye salmon throughout the entire run timing and spawning period. 

 

Findings and implications 

Pacific salmon are an economically, culturally, and ecologically significant group of 

animals. They are the focus of many tagging studies at all life history stages in efforts to 

understand their complex migration biology and to inform fisheries management (Drenner et al. 

2012). A number of studies on juvenile Pacific salmon are dedicated to determining tag size 
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limitations and the effects of tagging on a number of behavioural and health indices (e.g. Adams 

et al. 1998a; Adams et al. 1998b; Martinelli et al. 1998; Chittenden et al. 2009; Jepsen et al. 

2011; Collins et al. 2013), but there is a paucity of reports designed to identify potential effects 

on adults. In order for telemetry studies to generate unbiased data and to influence appropriate 

conservation and management actions, tagging effects must be addressed and quantified.  

 In Chapter 2, I found no differences in the immediate physiological responses of adult 

female sockeye salmon tagged via gastric insertion or external attachment. Furthermore, tagged 

fish showed similar responses to those of untagged control fish. Plasma lactate and cortisol 

concentrations remained elevated 4 h post-tagging indicating that the fish had not fully recovered 

from capture, handling, and tagging. The persistent metabolic disturbances may have influenced 

the ability of fish to burst-swim (Farrell et al. 1998; Jain and Farrell 2003). I determined that the 

capture and handling associated with a tagging event were stressful, while the addition of the 

transmitter, regardless of tagging method, was non-additive over the relatively short assessment 

period. An important observation was the high frequency of perforation of the intestinal wall in 

more mature gastrically tagged fish. The occurrence of stomach perforation has been reported in 

other telemetry studies of migrating adult Pacific salmon (Gray and Haynes 1979; Schubert and 

Scarborough 1996; Corbett et al. 2012), and has been hypothesized to be a cause of premature 

mortality in gastrically tagged individuals compared to externally tagged or control conspecifics. 

We did not identify any distinct physiological disturbances due to stomach perforation 1 h or 4 h 

post-tagging, suggesting that any potential impacts on survival must manifest days or weeks 

following the tagging event, if at all, or involved physiological metrics that we did not quantify 

here.  
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 The study design of Chapter 3 was planned to expand on the findings of Chapter 2 and to 

encompass long-term behavioural and survival outcomes. Consistent with reports of immediate 

movement post-tagging from other telemetry studies on migrating Pacific salmon (Gray and 

Haynes 1979), I reported high frequencies of movement away from the release area within 35 h 

for fish tagged with either a gastric or external tag. Some of these movements were downstream 

which could be interpreted as fallback. However, fish in the Harrison River mill around before 

spawning, and are known to spawn upstream and downstream of the tagging site. Fish tagged 

earlier in the spawning season were more likely to move immediately post-tagging. Tag type 

significantly influenced fate of adult Harrison sockeye salmon, in which almost twice as many 

externally tagged fish were successful in reaching spawning areas compared to gastrically tagged 

fish. These findings were consistent with results from a survival study by Corbett et al. (2012), 

which reported significantly lower survival of gastrically tagged adult Chinook salmon than 

externally tagged and control fish. Regardless of species or population origin, adult semelparous 

Pacific salmon in the late stages of spawning migration experience a suite of degenerative 

physical and physiological changes, which includes atrophy of the digestive organs (Morbey et 

al. 2005). Managers and researchers using telemetry to study adult Pacific salmon during 

advanced stages of the freshwater spawning migration must acknowledge that the gastric 

implantation method significantly increases the likelihood of tag effects (mortality, downstream 

fallback, decreased presence on or near spawning areas).  

These results reveal that the failure to detect immediate physiological disturbances 

specific to gastric and external tag attachment techniques on adult migrating sockeye salmon 

does not negate the possibility that tag-specific long-term adverse effects on behaviour and 

survival may occur.  



 88 

 

Future directions 

Understanding the limitations of different tag types is crucial to selecting the transmitter 

attachment technique that is best suited to generate unbiased data for the species in question. 

Telemetry will continue to be an important tool in studying the migration of adult Pacific 

salmon, but in order to have confidence in the reliability of the information generated, future 

efforts must take a step back to validate its use and to recognize potential impacts on tagged 

individuals, especially when attempting to quantify mortality and behaviour.  

When exploring the question of the immediate stress response caused by different tagging 

methods, it is challenging to isolate the physiological disturbances caused by the tagging activity 

from those elicited by the capture and handling processes. This makes it difficult to directly 

compare different tag attachment methods in terms of adverse effects (Jepsen et al. 2015). Future 

research seeking to quantify the physiological response specific to different tagging techniques 

may consider allowing fish to recover for a period of time after the capture event and before the 

tagging and biosampling procedures. This may allow the effects of capture to subside and for a 

potentially more accurate measurement of tagging-induced stress. However, it is well-known that 

migrating adult Pacific salmon do not respond well to confinement (Portz et al. 2006) therefore 

creating a holding environment in the wild in which recovery from capture is maximized and 

holding-induced stress is minimized may be challenging. Moreover, capture of adult Pacific 

salmon will almost always immediately precede tagging such that the approach I used here is 

reflective of real tagging scenarios. To ensure that the stress response provoked when tagging an 

adult Pacific salmon in the wild remains below lethal levels, a review of capture and handling 

methods is necessary. Incorporating thresholds of holding time, crowding, risks of injury, air 
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exposure, and handling time that ensure maximum survival would aid in developing best 

practices for tagging adult Pacific salmon. However, the circumstances surrounding adult Pacific 

salmon tagging are often context-specific (freshwater or saltwater environments, cool or warm 

water temperatures, less mature or more mature individuals, a wide range of capture gears, 

biopsy or no biopsy, anesthetic or no anesthetic, etc.; see Raby et al. 2015 for review) and this 

complexity reduces the ability to make broad-scale suggestions to standardize capture, handling, 

and tagging techniques.  

 The high frequency of perforated stomachs in sockeye salmon tagged via gastric insertion 

in the late sampling period in Chapter 2 and the remarkably lower success of gastrically tagged 

individuals in reaching spawning areas in Chapter 3 support an existing call for future studies to 

assess the impacts of stomach perforation (Corbett et al. 2012, Gray and Haynes 1979). Studies 

describing the function of the gastrointestinal tract of migrating adult Pacific salmon are rare (but 

see Grosell et al. 2010 for a synthesis of gut functions in other fish) and it is widely accepted that 

there is little to no use of the gut at this stage because feeding has ceased prior to freshwater 

entry. This reasoning is also commonly referenced in support for the use of gastric tags for 

Pacific salmon during this life history stage. However, my findings suggest that physical 

placement of the tag in the stomach or injury to the stomach lining due to the gastric tag may 

influence premature mortality. Testing different methods or materials associated with the gastric 

insertion technique may help identify modifications beneficial to minimizing tagging impacts, 

such as using a lubricant on the tag upon insertion (Keefer et al. 2004a) and revising the physical 

properties, such as size, shape, and materials used, of the plunger, the gastric transmitter, and the 

antenna. Future studies that can successfully describe the physiological mechanisms associated 

with a perforated stomach will also help identify when the use of gastric insertion is more likely 
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to increase the likelihood of adverse tag effects. Quantifying the rate of weakening of the 

stomach lining and increased susceptibility to perforation as functions of freshwater residency 

would be beneficial for researchers who are considering transmitter attachment options for adult 

Pacific salmon in the late stages of maturation.   

 Finally, researchers leading telemetry studies on fish should acknowledge the potential 

for tagging effects and ensure that appropriate validation studies are cited or conducted. 

Increasing the reporting of unsuccessful telemetry studies or studies that failed to detect tagging 

effects is required to increase our understanding of acceptable tagging techniques (Murray and 

Fuller 2000; Thiem et al. 2011).  
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